An Approach for Modelling Energy Flows in Residential Premises

Author(s):  
Snezhinka Zaharieva ◽  
Iordan Stoev ◽  
Valentin Mutkov ◽  
Teodora Petrova
Keyword(s):  
2020 ◽  
Vol 26 (3) ◽  
pp. 14-19
Author(s):  
Laurențiu Bogdan Asalomia ◽  
Gheorghe Samoilescu

AbstractThe paper analyzes, starting from the Integrated Management System, the role of automation, the role of the officer and the role of the Energy Management System on board the ship. The implementation of an EnMS establishes the structure and discipline of identifying energy flows, implementing management actions and, finally, applying technical solutions, which significantly reduce energy costs, reduce non-productive time in production, and reduce emissions. of Greenhouse Gases in the environment. The steps to be highlighted in the realization of energy management are analyzed.


2018 ◽  
pp. 15-27 ◽  
Author(s):  
V. A. Gribkov ◽  
◽  
A. S. Demin ◽  
N. A. Epifanov ◽  
E. E. Kazilin ◽  
...  

1992 ◽  
Vol 25 (11) ◽  
pp. 403-410 ◽  
Author(s):  
B. E. Rittmann

Microbiological detoxification of hazardous organic pollutants is highly promising, but its reliable implementation requires a sophisticated understanding of several different substrate types and how they interact. This paper carefully defines the substrate types and explains how their interactions affect the bacteria's electron and energy flows, information flow, and degradative activity. For example, primary substrates, which are essential for growth and maintenance of the bacteria, also interact with degradation of specific hazardous pollutants by being inducers, inhibitors, and direct or indirect cosubstrates. The target contaminants, which often are secondary substrates, also have the interactive roles of self-inhibitor, inhibitor of primary-substrate utilization, inducer, and a part of an aggregate primary substrate.


2012 ◽  
Vol 22 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mirko Schäfer ◽  
Johannes Wagner ◽  
Alexander Schlüter ◽  
Jens Hesselbach

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clara Inés Pardo Martínez ◽  
William Alfonso Piña ◽  
Angelo Facchini ◽  
Alexander Cotte Poveda

Abstract Background Currently, most of the world’s population lives in cities, and the rapid urbanization of the population is driving increases in the demand for products, goods and services. To effectively design policies for urban sustainability, it is important to understand the trends of flows in energy and materials as they enter and leave a city. This knowledge is essential for determining the key elements characterizing future urban growth and addressing future supply challenges. Methods This paper presents an analysis of the energy and material flows in the city of Bogotá over the time span from 2001 to 2017. Urban flows are also characterized in terms of their temporal evolution with respect to population growth to compare and identify the changes in the main input flows, wealth production, emissions and waste in the city. Results The results of the analysis are then compared with those for other selected large urban agglomerations in Latin America and worldwide to highlight similarities and make inferences. The results show that in Bogotá, there was a decrease in some of the material flows, such as the consumption of water and the generation of discharge, in recent years, while there was an increase in the consumption of energy and cement and in the production of CO2 emissions and construction materials. Solid waste production remained relatively stable. With respect to the other large cities considered, we observe that the 10-year growth rates of the flows with respect to population growth are lower in Bogotá, particularly when compared with the other urban agglomerations in Latin America. Conclusions The findings of this study are important for advancing characterizations of the trends of material and energy flows in cities, and they contribute to the establishment of a benchmark that allows for the definition and evaluation of the different impacts of public policy while promoting the sustainability of Bogotá in the coming decades.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 801
Author(s):  
Gianluca Valenti ◽  
Aldo Bischi ◽  
Stefano Campanari ◽  
Paolo Silva ◽  
Antonino Ravidà ◽  
...  

Stirling units are a viable option for micro-cogeneration applications, but they operate often with multiple daily startups and shutdowns due to the variability of load profiles. This work focused on the experimental and numerical study of a small-size commercial Stirling unit when subjected to cycling operations. First, experimental data about energy flows and emissions were collected during on–off operations. Second, these data were utilized to tune an in-house code for the economic optimization of cogeneration plant scheduling. Lastly, the tuned code was applied to a case study of a residential flat in Northern Italy during a typical winter day to investigate the optimal scheduling of the Stirling unit equipped with a thermal storage tank of diverse sizes. Experimentally, the Stirling unit showed an integrated electric efficiency of 8.9% (8.0%) and thermal efficiency of 91.0% (82.2%), referred to as the fuel lower and, between parenthesis, higher heating value during the on–off cycling test, while emissions showed peaks in NOx and CO up to 100 ppm but shorter than a minute. Numerically, predictions indicated that considering the on–off effects, the optimized operating strategy led to a great reduction of daily startups, with a number lower than 10 per day due to an optimal thermal storage size of 4 kWh. Ultimately, the primary energy saving was 12% and the daily operational cost was 2.9 €/day.


2018 ◽  
Vol 240 ◽  
pp. 04003 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta

In this paper, an investigation of the electrical load temporal resolution on the PV/Grid energy system flows, and self-consumption is done in order to determine the optimum parameters for modelling and simulation. The analysed PV/Grid power systems include a photovoltaic system with the nominal power of Pmax@STC=1.5, 2.5, 3.5 kW without storage unit connected to the grid. The results show that the temporal load resolution may have a high impact on energy flows as well as can be a critical issue for the system analysis accuracy even for the single household. It has been found that the load temporal resolution for energy consumption of 1-min yields reliable results, while data resolutions of 5 and 15 min are still sufficient, however, in that case, the daily electrical energy flows and in consequence energy self-consumption estimation error for selected days may exceed 15%. Acquisition time step longer than 15-minutes may increase error above 20% and from the designer’s point of view should not be used. The high and low temporal resolution experimental data of the electricity consumption (load) for a household are available in digital form on the author’s website http://home.agh.edu.pl/jaszczur.


Sign in / Sign up

Export Citation Format

Share Document