Signal interpretation of partial discharges in three-phase medium voltage cable systems measured on-line

Author(s):  
P.C.J.M. van der Wielen ◽  
P.A.F. Wouters ◽  
E.F. Steennis
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3267
Author(s):  
Ramon C. F. Araújo ◽  
Rodrigo M. S. de Oliveira ◽  
Fernando S. Brasil ◽  
Fabrício J. B. Barros

In this paper, a novel image denoising algorithm and novel input features are proposed. The algorithm is applied to phase-resolved partial discharge (PRPD) diagrams with a single dominant partial discharge (PD) source, preparing them for automatic artificial-intelligence-based classification. It was designed to mitigate several sources of distortions often observed in PRPDs obtained from fully operational hydroelectric generators. The capabilities of the denoising algorithm are the automatic removal of sparse noise and the suppression of non-dominant discharges, including those due to crosstalk. The input features are functions of PD distributions along amplitude and phase, which are calculated in a novel way to mitigate random effects inherent to PD measurements. The impact of the proposed contributions was statistically evaluated and compared to classification performance obtained using formerly published approaches. Higher recognition rates and reduced variances were obtained using the proposed methods, statistically outperforming autonomous classification techniques seen in earlier works. The values of the algorithm’s internal parameters are also validated by comparing the recognition performance obtained with different parameter combinations. All typical PD sources described in hydro-generators PD standards are considered and can be automatically detected.


Author(s):  
Luo Xiaohui

This paper proposed a low cost wireless monitoring system based on ZigBee wireless transmission, and designed a new floating voltage sensor which is suitable for the monitoring of medium voltage and high voltage(MV/HV) public equipment. The system used TI-CC2530 as the controller, proposed a new moving average voltage sensing(MAVS) algorithm by reasonable assumptions, and adopted algorithms to perform the theoretical analysis for the single phase and three-phase voltage. At last, the author carried out a practical experiment on the wireless floating voltage sensor under the voltage up to 30kV, the experimental results showed that the proposed low cost wireless sensor can achieve a good voltage monitoring function, and the error is less than 3%.


Sign in / Sign up

Export Citation Format

Share Document