University Nanosatellite Television Camera

Author(s):  
Valentin Kolobrodov ◽  
Oleksandr Lysenko ◽  
Volodymyr Mykytenko ◽  
Vyacheslav Sokurenko
Keyword(s):  
Author(s):  
W. R. Duff ◽  
L. E. Thomas ◽  
R. M. Fisher ◽  
S. V. Radcliffe

Successful retrieval of the television camera and other components from the Surveyor III spacecraft by the Apollo 12 astronauts has provided a unique opportunity to study the effects of a known and relatively extensive exposure to the lunar environment. Microstructural effects including those produced by micro-meteorite impact, radiation damage (by both the solar wind and cosmic rays) and solar heating might be expected in the materials used to fabricate the spacecraft. Samples received were in the form of 1 cm2 of painted unpainted aluminum alloy sheet from the top of the camera visor (JPL Code 933) and the sides (935,936) and bottom (934) of the lower camera shroud. They were prepared for transmission electron microscopy by first hand-grinding with abrasive paper to a thickness of 0.006". The edges were lacquered and the sample electropolished in 10% perchloric methanol using the “window” method, to a thickness of ~0.001". Final thinning was accomplished by polishing 3 mm punched disks in an acetic-phosphoric-nitric acid solution.


Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
Malcolm Brown ◽  
Reynolds M. Delgado ◽  
Michael J. Fink

While light microscopy has been used to image sub-micron objects, numerous problems with diffraction-limitations often preclude extraction of useful information. Using conventional dark-field and phase contrast light microscopy coupled with image processing, we have studied the following objects: (a) polystyrene beads (88nm, 264nm, and 557mn); (b) frustules of the diatom, Pleurosigma angulatum, and the T-4 bacteriophage attached to its host, E. coli or free in the medium. Equivalent images of the same areas of polystyrene beads and T-4 bacteriophages were produced using transmission electron microscopy.For light microscopy, we used a Zeiss universal microscope. For phase contrast observations a 100X Neofluar objective (N.A.=1.3) was applied. With dark-field, a 100X planachromat objective (N.A.=1.25) in combination with an ultra-condenser (N.A.=1.25) was employed. An intermediate magnifier (Optivar) was available to conveniently give magnification settings of 1.25, 1.6, and 2.0. The image was projected onto the back focal plane of a film or television camera with a Carl Zeiss Jena 18X Compens ocular.


1987 ◽  
Vol 24 (4) ◽  
pp. 499-508 ◽  
Author(s):  
J. S. O. Lau ◽  
L. F. Auger ◽  
J. G. Bisson

Borehole television survey and acoustic televiewer logging provide rapid, cost-effective, and accurate methods of surveying fractures and their characteristics within boreholes varying in diameter from 7.6 to 15.3 cm. In the television survey, a camera probe is used to inspect the borehole walls. Measurements of location, orientation, infilling width, and aperture of fractures are made on the television screen and recorded on computer data record sheets. All observations are recorded on video cassette tapes. With the acoustic televiewer, oriented images of fractures in the borehole walls are recorded on a strip–chart log and also on video cassette tapes. The images are displayed as if the walls were split vertically along magnetic north and spread out horizontally. Measurements of fracture characteristics are made on the strip–chart log, using a digitizing table and a microcomputer, and the data recorded on floppy diskettes. In both surveys, an inclined fracture is displayed as a sinusoidal curve, from which the apparent orientation of the fracture can be measured. Once the borehole orientation is known, the true orientation of the fracture can be computed from its apparent orientation. Computer analysis of the fracture data, provides a rapid assessment of fracture occurrence, fracture aperture, and statistically significant concentrations of fracture orientations. Key words: borehole, television survey, acoustic televiewer logging, fractures, distribution, orientation, aperture.


1982 ◽  
Vol 8 (2) ◽  
pp. 161-162
Author(s):  
H. Wade Faulkner ◽  
Cheryl Blanton ◽  
Raymond Norman

Author(s):  
C S Wu ◽  
Y C Liu

A rule-based control system of weld bead width is established for realizing in-process control of pulsed gas tungsten arc welding. The system consists of a microprocessor-controlled power supply and working table, a solid state television camera, a high-speed analogue-to-digital converter and an image processing and control computer. Considering the characteristic of arc light and its influence on vision sensing, special measures were taken for image capturing, processing and weld bead width extraction. The rule-based model was combined with the principle of PID (proportional integral derivative) control, and a parameter-changing PID controller was designed. The bead-on-plate welding experiments were carried out. The results show that the system is of good adaptablity for in-process control of weld bead width in pulsed gas tungsten arc welding (GTAW).


1968 ◽  
Vol 7 (8) ◽  
pp. 1625 ◽  
Author(s):  
S. B. Mende ◽  
B. J. O’Brien

Sign in / Sign up

Export Citation Format

Share Document