Imaging sub-micron objects with light microscopy: Visualization of the T-4 bacteriophage

Author(s):  
Malcolm Brown ◽  
Reynolds M. Delgado ◽  
Michael J. Fink

While light microscopy has been used to image sub-micron objects, numerous problems with diffraction-limitations often preclude extraction of useful information. Using conventional dark-field and phase contrast light microscopy coupled with image processing, we have studied the following objects: (a) polystyrene beads (88nm, 264nm, and 557mn); (b) frustules of the diatom, Pleurosigma angulatum, and the T-4 bacteriophage attached to its host, E. coli or free in the medium. Equivalent images of the same areas of polystyrene beads and T-4 bacteriophages were produced using transmission electron microscopy.For light microscopy, we used a Zeiss universal microscope. For phase contrast observations a 100X Neofluar objective (N.A.=1.3) was applied. With dark-field, a 100X planachromat objective (N.A.=1.25) in combination with an ultra-condenser (N.A.=1.25) was employed. An intermediate magnifier (Optivar) was available to conveniently give magnification settings of 1.25, 1.6, and 2.0. The image was projected onto the back focal plane of a film or television camera with a Carl Zeiss Jena 18X Compens ocular.

Author(s):  
Mehmet Sarikaya ◽  
James M. Howe

The image resolution in bright-field (BF) and dark-field (DF) conventional transmission electron microscopy (TEM) is given by: r = 0.66 CS¼¾¾, where Cs and ¾ are the spherical aberration coefficient of the objective lens and electron wavelength, respectively. Based on this formula, it should be possible to resolve single atoms or clusters of atoms by phase contrast imaging with a highly coherent electron beam and a properly defocused objective lens; this has been demonstrated for both BF and DF imaging. However, for most situations encountered in conventional TEM, the type of information that can be obtained about the specimen is the most important, rather than the instrumental resolution. Atomicresolution microscopy of crystalline specimens relies on phase contrast produced when two or more beams interfere to form an image and this is discussed elsewhere in this symposium. This paper discusses the contrast and resolution when either a single beam or diffuse scattering is used to form an image.


1979 ◽  
Vol 36 (1) ◽  
pp. 97-107
Author(s):  
W.D. Cohen ◽  
N.B. Terwilliger

The elliptical, anucleate erythrocytes of camels have been examined for the presence of marginal bands and their constituent microtubules. Lysis of erythrocytes under microtubule-stabilizing conditions readily revealed marginal bands in at least 3 % of the cells, as observed by phase-contrast and darkfield light microscopy. Microtubules plus a marginal band-encompassing network of material are visible in lysed cell whole mounts with transmission electron microscopy. Marginal band microtubules are also evident in electron micrographs of thin-sectioned camel erythrocytes identifiable as reticuloyctes on the basis of submaximal electron density (reduced haemoglobin iron content) and presence of polysomes. The results suggest that marginal bands may be involved in morphogenesis of camel erythrocytes but are not required for maintenance of their ellipticity after cells are fully differentiated.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Bruce Mackay

The broadest application of transmission electron microscopy (EM) in diagnostic medicine is the identification of tumors that cannot be classified by routine light microscopy. EM is useful in the evaluation of approximately 10% of human neoplasms, but the extent of its contribution varies considerably. It may provide a specific diagnosis that can not be reached by other means, but in contrast, the information obtained from ultrastructural study of some 10% of tumors does not significantly add to that available from light microscopy. Most cases fall somewhere between these two extremes: EM may correct a light microscopic diagnosis, or serve to narrow a differential diagnosis by excluding some of the possibilities considered by light microscopy. It is particularly important to correlate the EM findings with data from light microscopy, clinical examination, and other diagnostic procedures.


Author(s):  
T.W. Smith ◽  
J.A. Roberts ◽  
B.J. Martin

Chronic pyelonephritis is one of the most common diseases of the kidney and accounts for a sizeable number of cases of renal insufficiency in man, however its pathogenesis requires further elucidation. Transmission electron microscopy may serve as a uniquely effective means of observing details of the nature of this disease. The present paper describes preliminary results of an ultrastructural study of chronic pyelonephritis in Macaca arctoides (stumptail monkey).The infection was induced in these experiments in a retrograde fashion by means of a unilateral catheterization of the left ureter whereby an innoculum of 10 cc of broth containing approximately 2 billion E. coli per cc and radio-opaque dye were injected under pressure (mimicing vesico-ureteric reflux).


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2020 ◽  
Vol 75 (11) ◽  
pp. 913-919
Author(s):  
Frank Krumeich

AbstractSince the 1970s, high-resolution transmission electron microscopy (HRTEM) is well established as the most appropriate method to explore the structural complexity of niobium tungsten oxides. Today, scanning transmission electron microscopy (STEM) represents an important alternative for performing the structural characterization of such oxides. STEM images recorded with a high-angle annular dark field (HAADF) detector provide not only information about the cation positions but also about the distribution of niobium and tungsten as the intensity is directly correlated to the local scattering potential. The applicability of this method is demonstrated here for the characterization of the real structure of Nb7W10O47.5. This sample contains well-ordered domains of Nb8W9O47 and Nb4W7O31 besides little ordered areas according to HRTEM results. Structural models for Nb4W7O31 and twinning occurring in this phase have been derived from the interpretation of HAADF-STEM images. A remarkable grain boundary between well-ordered domains of Nb4W7O31 and Nb8W9O47 has been found that contains one-dimensionally periodic features. Furthermore, short-range order observed in less ordered areas could be attributed to an intimate intergrowth of small sections of different tetragonal tungsten bronze (TTB) based structures.


2021 ◽  
Vol 123 (6) ◽  
pp. 151761
Author(s):  
Tasuku Hiroshige ◽  
Kei-Ichiro Uemura ◽  
Shingo Hirashima ◽  
Kiyosato Hino ◽  
Akinobu Togo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document