Multiscale PCA to distinguish regular and irregular surfaces using tri axial head and trunk acceleration signals

Author(s):  
Gita Pendharkar ◽  
Ganesh R. Naik ◽  
Amit Acharyya ◽  
Hung T. Nguyen
2016 ◽  
Vol E99.D (6) ◽  
pp. 1482-1484
Author(s):  
Yoshitaka OTANI ◽  
Osamu AOKI ◽  
Tomohiro HIROTA ◽  
Hiroshi ANDO

2020 ◽  
Vol 82 ◽  
pp. 70-77
Author(s):  
Ignacio Ghersi ◽  
Maria H. Ferrando ◽  
Carlos G. Fliger ◽  
Cristhian F. Castro Arenas ◽  
Diego J. Edwards Molina ◽  
...  

2022 ◽  
Author(s):  
Gilles Clement ◽  
Yoshino Sugita

The acceleration of the head and hip along the x-, y-, and z-axis of 14 healthy subjects was recorded during two sessions of 12 consecutive hours. The magnitude, frequency content, and root mean square of the acceleration signals were used to determine the type of physical activity (sitting, standing, walking, etc.) during normal daily life on Earth. The acceleration signal slope (jerk) was also calculated to assess whether these activities were sufficient to maintain bone mineral density. These measurements indicated that the changes in vertical acceleration experienced by our subjects during normal daily life were presumably sufficient to maintain bone mineral density. However, these changes might not be sufficient for postmenopausal women and astronauts during long-term exposure to weightlessness during spaceflight


2017 ◽  
Vol 3 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ligia C. S. Fonseca ◽  
Annika K. Nelke ◽  
Jörg Bahm ◽  
Catherine Disselhorst-Klug

Abstract:Coping strategies of patients with obstetric brachial plexus palsy (OBPP) are highly individual. Up to now, individual movement performance is assessed by visual observations of physicians or therapists - a procedure, which is highly subjective and lacks objective data. However, objective data about the individual movement performance are the key to evidence-based and individualized treatment. In this paper, a new approach is presented, which provides objective information about the upper extremity movement performance of patients with OBPP. The approach is based on the use of accelerometers in combination with a classification procedure. The movement performance of 10 healthy volunteers and 41 patients with OBPP has been evaluated by experienced physiotherapists and has been assigned to one of 4 categories representing the Mallet Scale (MS) IV to I. Three triaxial-accelerometers were placed at chest, upper arm and wrist of the affected side of the patient. Acceleration signals have been recorded during repetitive movements with relevance regarding daily life. Here, especially the results from the “hand to mouth” task are presented. From the 9 recorded acceleration signals 13 relevant features were extracted. For each of the 13 features 4 thresholds have been determined distinguishing best between the 4 patient categories of the MS and the healthy subjects. With respect to the thresholds each feature value has been assigned to the discrete numbers 0, 1, 2, 3 or 4. Afterwards, each discrete number has been weighted by a factor regarding the correlation between the feature’s value and the MS score. The resulting weighted discrete numbers of all 13 features have been added resulting in a score, which quantifies the individual upper extremity movement performance. Based on this score the movement performance of each patient has been assigned to the classes “very good”, “good”, “regular” and “bad”. All movements of the 10 healthy volunteers were classified as “very good”. The movement performance of two patients MS IV were classified as “very good” as well and the movements of the other 16 patients as “good”. The movements of the entire group of MS III patients fell into the class “regular”. Just one MS II patient was assigned to the class “regular” while the others were classified as “bad”. It was not possible to classify the movements of MS I patients. This was mainly due to the fact that none of these patients MS I was able to complete the task successfully. The developed approach demonstrated its ability to quantify the movement performance of upper extremity movements based on accelerometers. This provides an easy to use tool to assess patient’s movement strategies during daily tasks for diagnosis and rehabilitation.


1998 ◽  
Vol 1 (3) ◽  
pp. 173-187
Author(s):  
Wayne J. Albert ◽  
Joan M. Stevenson ◽  
Geneviève A. Dumas ◽  
Roger W. Wheeler

The objectives of this study were to: 1) develop a dynamic 2D link segment model for lifting using the constraints of four sensors from an electromagnetic motion analysis system; 2) evaluate the magnitude of shoulder movement in the sagittal plane during lifting; and 3) investigate the effect of shoulder translation on trunk acceleration and lumbar moments calculated by the developed model and comparing it with two separate 2D dynamic link segment models. Six women and six men lifted loads of 2 kg, 7 kg, 12 kg and 2 kg, 12 kg, 22 kg respectively, under stoop, squat and freestyle conditions. Trunk orientation and position, as well as shoulder position were monitored during all lifts using the Polhemus FASTRAK\trdmk. Results indicated that average range of motion was 0.05 ± 0.02 m in the horizontal direction and 0.03 ± 0.02 m in the vertical direction. Shoulder position relative to T1 was located 0.07 ± 0.02 m anteriorly, and 0.02 ± 0.04 m superiorly (0.06 and 0.00 m for males and 0.08 and 0.04 m for females, respectively). To estimate the effect of shoulder motion on trunk acceleration and L5/S1 moments, three two-dimensional dynamic link segment models were developed within the constraints of the electromagnetic tracking system and compared. Trunk segment endpoints were defined as L5/S1 and either T1 or shoulder depending on model type. For trunk accelerations, average differences between models were greater than 40 deg/s² in 70.4% trunk accelerations did not translate into significantly different moment calculations between models. Average peak dynamic L5/S1 moment differences between models were smaller than 4 Nm for all lifting conditions which failed to be statistically significant (p>0.05). The model type did not have a statistically significant effect on peak L5/S1 moments. Therefore, despite important shoulder joint translations, peak L5/S1 moments were not significantly affected.


2013 ◽  
Vol 10 (1) ◽  
pp. 118 ◽  
Author(s):  
Masaki Sekine ◽  
Toshiyo Tamura ◽  
Masaki Yoshida ◽  
Yuki Suda ◽  
Yuichi Kimura ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuta Teruyama ◽  
Takashi Watanabe

The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.


Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Moshe Reshef

Nonflat surface topography introduces a numerical problem for migration algorithms that are based on depth extrapolation. Since the numerically efficient migration schemes start at a flat interface, wave‐equation datuming is required (Berryhill, 1979) prior to the migration. The computationally expensive datuming procedure is often replaced by a simple time shift for the elevation to datum correction. For nonvertically traveling energy this correction is inaccurate. Subsequent migration wrongly positions the reflectors in depth.


2016 ◽  
Vol 26 (1) ◽  
pp. 53-58 ◽  
Author(s):  
W. Steven Tucker ◽  
Erik E. Swartz ◽  
Stephen D. Hornor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document