Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks

Author(s):  
Amirtaha Taebi ◽  
Catherine T. Vu ◽  
Emilie Roncali
2011 ◽  
Vol 46 (2) ◽  
pp. 298-314 ◽  
Author(s):  
G.M. Stavrakakis ◽  
D.P. Karadimou ◽  
P.L. Zervas ◽  
H. Sarimveis ◽  
N.C. Markatos

2018 ◽  
Author(s):  
Christopher McComb

The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and syn- thesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a ma- rine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze off- shore structure.


Author(s):  
Juan Bernardo Sosa Coeto ◽  
Gustavo Urquiza Beltrán ◽  
Juan Carlos García Castrejon ◽  
Laura Lilia Castro Gómez ◽  
Marcelo Reggio

Overall performance of hydraulic submersible pump is strongly linked to its geometry, impeller speed and physical properties of the fluid to be pumped. During the design stage, given a fluid and an impeller speed, the pump blades profiles and the diffuser shape has to be determined in order to achieve maximum power and efficiency. Using Computational Fluid Dynamics (CFD) to calculate pressure and velocity fields, inside the diffuser and impeller of pump, represents a great advantage to find regions where the behavior of fluid dynamics could be adverse to the pump performance. Several trials can be run using CFD with different blade profiles and different shapes and dimensions of diffuser to calculate the effect of them over the pump performance, trying to find an optimum value. However the optimum impeller and diffuser would never be obtained using lonely CFD computations, by this means are necessary the application of Artificial Neural Networks, which was used to find a mathematical relation between these components (diffusers and blades) and the hydraulic head obtained by CFD calculations. In the present chapter artificial neural network algorithms are used in combinations with CFD computations to reach an optimum in the pumps performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nick Pepper ◽  
Audrey Gaymann ◽  
Sanjiv Sharma ◽  
Francesco Montomoli

AbstractThis work presents a machine learning based method for bi-fidelity modelling. The method, a Knowledge Based Neural Network (KBaNN), performs a local, additive correction to the outputs of a coarse computational model and can be used to emulate either experimental data or the output of a more accurate, but expensive, computational model. An advantage of the method is that it can scale easily with the number of input and output features. This allows bi-fidelity modelling approaches to be applied to a wide variety of problems, for instance in the bi-fidelity modelling of fields. We demonstrate this aspect in this work through an application to Computational Fluid Dynamics, in which local corrections to a velocity field are performed by the KBaNN to account for mesh effects. KBaNNs were trained to make corrections to the free-stream velocity field and the boundary layer. They were trained on a limited data-set consisting of simple two-dimensional flows. The KBaNNs were then tested on a flow over a more complex geometry, a NACA 2412 airfoil. It was demonstrated that the KBaNNs were still able to provide a local correction to the velocity field which improved its accuracy. The ability of the KBaNNs to generalise to flows around new geometries that share similar physics is encouraging. Through knowledge based neural networks it may be possible to develop a system for bi-fidelity, computer based design which uses data from past simulations to inform its predictions.


Sign in / Sign up

Export Citation Format

Share Document