Stator-flux-oriented control with high torque dynamics in the whole speed range for electric vehicles

Author(s):  
M. Spichartz ◽  
A. Steimel ◽  
V. Staudt
Author(s):  
Yuliang Wen ◽  
Hanfeng Zheng ◽  
Zhaoyang Zhang ◽  
Jiade Huang ◽  
Xiaofan Zeng ◽  
...  

Author(s):  
M. Spichartz ◽  
M. Oettmeier ◽  
C. Heising ◽  
V. Staudt ◽  
A. Steimel

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 220
Author(s):  
Cheng Lin ◽  
Jilei Xing ◽  
Xingming Zhuang

Sensorless control technology of PMSMs is of great importance for safety and reliability in electric vehicles. Among all existing methods, only the extended flux-based method has great performance over all speed range. However, the accuracy and reliability of the extended flux rotor position observer are greatly affected by the dead-time effect. In this paper, the extended flux-based observer is adopted to develop a sensorless control system. The influence of dead-time effect on the observer is analyzed and a dead-time correction method is specially designed to guarantee the reliability of the whole control system. A comparison of estimation precision among the extended flux-based method, the electromotive force (EMF)-based method and the high frequency signal injection method is given by simulations. The performance of the proposed sensorless control system is verified by experiments. The experimental results show that the proposed extended flux-based sensorless control system with dead-time correction has satisfactory performance over full speed range in both loaded and non-loaded situations. The estimation error of rotor speed is within 4% in all working conditions. The dead-time correction method improves the reliability of the control system effectively.


2013 ◽  
Vol 373-375 ◽  
pp. 1287-1293
Author(s):  
Jian Wei Liang ◽  
Tao Wang

The paper is based on PSCAD/EMTDC. The basic structure and operation principle of DFIG are analyzed and the mathematical model of DFIG is established, based on which the control system of rotor-side and grid-side converters is set up. The stator flux-oriented vector control is adopted for rotor-side converter. The no-load grid connection is realized before cutting in and control strategy is switched after grid connection successfully. DFIG can meet grid connection condition quickly with the control strategy and is connected to grid with no current shock nearly. The output of active and reactive power can be regulated respectively.


Sign in / Sign up

Export Citation Format

Share Document