Optimization of wireless bandwidth utilization

Author(s):  
J. Bourgeois ◽  
E. Mory ◽  
F. Spies
2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


2021 ◽  
Vol 11 (11) ◽  
pp. 5270
Author(s):  
Waqas ur Rahman ◽  
Md Delowar Hossain ◽  
Eui-Nam Huh

Video clients employ HTTP-based adaptive bitrate (ABR) algorithms to optimize users’ quality of experience (QoE). ABR algorithms adopt video quality based on the network conditions during playback. The existing state-of-the-art ABR algorithms ignore the fact that video streaming services deploy segment durations differently in different services, and HTTP clients offer distinct buffer sizes. The existing ABR algorithms use fixed control laws and are designed with predefined client/server settings. As a result, adaptation algorithms fail to achieve optimal performance across a variety of video client settings and QoE objectives. We propose a buffer- and segment-aware fuzzy-based ABR algorithm that selects video rates for future video segments based on segment duration and the client’s buffer size in addition to throughput and playback buffer level. We demonstrate that the proposed algorithm guarantees high QoE across various video player settings and video content characteristics. The proposed algorithm efficiently utilizes bandwidth in order to download high-quality video segments and to guarantee high QoE. The results from our experiments reveal that the proposed adaptation algorithm outperforms state-of-the-art algorithms, providing improvements in average video rate, QoE, and bandwidth utilization, respectively, of 5% to 18%, about 13% to 30%, and up to 45%.


Author(s):  
Chirag Sudarshan ◽  
Lukas Steiner ◽  
Matthias Jung ◽  
Jan Lappas ◽  
Christian Weis ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Gwo-Jiun Horng ◽  
Chi-Hsuan Wang ◽  
Chih-Lun Chou

This paper proposes a tree-based adaptive broadcasting (TAB) algorithm for data dissemination to improve data access efficiency. The proposed TAB algorithm first constructs a broadcast tree to determine the broadcast frequency of each data and splits the broadcast tree into some broadcast wood to generate the broadcast program. In addition, this paper develops an analytical model to derive the mean access latency of the generated broadcast program. In light of the derived results, both the index channel’s bandwidth and the data channel’s bandwidth can be optimally allocated to maximize bandwidth utilization. This paper presents experiments to help evaluate the effectiveness of the proposed strategy. From the experimental results, it can be seen that the proposed mechanism is feasible in practice.


Sign in / Sign up

Export Citation Format

Share Document