On-line copper loss minimization control method of induction and PM motors with periodic fluctuation load

Author(s):  
Masakazu Kato ◽  
Jun-ichi Itoh
Author(s):  
Hai-Jin Chen ◽  
Jin-Yang Li

Purpose The purpose of this paper is to present a simple and effective method to search the optimal turn-on and turn-off angles on-line for the control of the switched reluctance motor (SRM). The optimal turn-on and turn-off angles are defined as the ones that can meet torque production requirements with minimum copper loss. Design/methodology/approach The optimal turn-on and turn-off angles are first defined based on the analysis of the SRM losses and torque production principles. Then the algorithm for optimal angles searching is developed, and the searching parameters are determined through analytical computation. The optimal angles are approached on-line with iterative process. Simulation and experiments are finally performed to verify the proposed method. Findings The presented method can meet torque production requirements while copper loss is minimized. The optimal turn-on and turn-off angles are generally approached within five phase cycles for most of the SRM operation modes. Furthermore, the SRM drive system using the presented method exhibits good dynamics during starting and sudden load operations. Practical implications The presented method is simple, and implementation of it is easy. It is an eligible candidate for industrial applications where energy conversion efficiency is crucial. Originality/value The optimal turn-off angle definition that considers both torque production and copper loss minimization is proposed. The turn-on and turn-off angles are searched independently on-line with little SRM geometrical information. The searching steps are derived through analytical computation and qualitative analysis so that both the searching speed and algorithm convergence are balanced.


2021 ◽  
Vol 54 (1-2) ◽  
pp. 102-115
Author(s):  
Wenhui Si ◽  
Lingyan Zhao ◽  
Jianping Wei ◽  
Zhiguang Guan

Extensive research efforts have been made to address the motion control of rigid-link electrically-driven (RLED) robots in literature. However, most existing results were designed in joint space and need to be converted to task space as more and more control tasks are defined in their operational space. In this work, the direct task-space regulation of RLED robots with uncertain kinematics is studied by using neural networks (NN) technique. Radial basis function (RBF) neural networks are used to estimate complicated and calibration heavy robot kinematics and dynamics. The NN weights are updated on-line through two adaptation laws without the necessity of off-line training. Compared with most existing NN-based robot control results, the novelty of the proposed method lies in that asymptotic stability of the overall system can be achieved instead of just uniformly ultimately bounded (UUB) stability. Moreover, the proposed control method can tolerate not only the actuator dynamics uncertainty but also the uncertainty in robot kinematics by adopting an adaptive Jacobian matrix. The asymptotic stability of the overall system is proven rigorously through Lyapunov analysis. Numerical studies have been carried out to verify efficiency of the proposed method.


Robotica ◽  
1995 ◽  
Vol 13 (6) ◽  
pp. 591-598 ◽  
Author(s):  
Yagmur Denizhan

SummaryIn disassembly tasks, due to the large variety of objects and the different positions and orientations in which they appear, the disassembly trajectories supplied on-line by a human operator or an automatic recognition system can contain large errors. The classical compliant control methods turn out to be insufficient to eliminate sticking which is due to these errors. This paper presents a compliant control method for disassembly of non-elastic parts in non-elastic environments which adopts the trajectories according to realised motion. In case of sticking a new direction of motion is searched for until the manipulated part is set into motion.


2014 ◽  
Vol 685 ◽  
pp. 368-372 ◽  
Author(s):  
Hao Zhang ◽  
Ya Jie Zhang ◽  
Yan Gu Zhang

In this study, we presented a boiler combustion robust control method under load changes based on the least squares support vector machine, PID parameters are on-line adjusted and identified by LSSVM, optimum control output is obtained. The simulation result shows control performance of the intelligent control algorithm is superior to traditional control algorithm and fuzzy PID control algorithm, the study provides a new control method for strong non-linear boiler combustion control system.


2012 ◽  
Vol 220-223 ◽  
pp. 1258-1261
Author(s):  
Li Hong Wang

PID control is adopted in traditional DC speed regulating system. In start process the current super adjustment value is big. When adding load perturbation and voltage perturbation suddenly, its dynamic state function will be decended. Aimming at this problem, a kind of improved system was put forward. The speed modulator used fuzzy PID controller, according to e and ec, the parameters of the modulator can be modified on line. The current modulator adopted integral separable PID control method. The simulation results indicated that the improved system has better dynamic state function and anti- Rao function. Particularly the start current wave closes to the ideal rectangle wave more. So the responding speed of the system can be sped.


Sign in / Sign up

Export Citation Format

Share Document