High speed bus design using HSPICE optimization techniques based on the worst case design approach

Author(s):  
R. Lakhani ◽  
C. Deutschle ◽  
P. Franzon ◽  
M. Steer
2018 ◽  
Vol 27 (07) ◽  
pp. 1850116
Author(s):  
Yuanxin Bao ◽  
Wenyuan Li

A high-speed low-supply-sensitivity temperature sensor is presented for thermal monitoring of system on a chip (SoC). The proposed sensor transforms the temperature to complementary to absolute temperature (CTAT) frequency and then into digital code. A CTAT voltage reference supplies a temperature-sensitive ring oscillator, which enhances temperature sensitivity and conversion rate. To reduce the supply sensitivity, an operational amplifier with a unity gain for power supply is proposed. A frequency-to-digital converter with piecewise linear fitting is used to convert the frequency into the digital code corresponding to temperature and correct nonlinearity. These additional characteristics are distinct from the conventional oscillator-based temperature sensors. The sensor is fabricated in a 180[Formula: see text]nm CMOS process and occupies a small area of 0.048[Formula: see text]mm2 excluding bondpads. After a one-point calibration, the sensor achieves an inaccuracy of [Formula: see text][Formula: see text]1.5[Formula: see text]C from [Formula: see text]45[Formula: see text]C to 85[Formula: see text]C under a supply voltage of 1.4–2.4[Formula: see text]V showing a worst-case supply sensitivity of 0.5[Formula: see text]C/V. The sensor maintains a high conversion rate of 45[Formula: see text]KS/s with a fine resolution of 0.25[Formula: see text]C/LSB, which is suitable for SoC thermal monitoring. Under a supply voltage of 1.8[Formula: see text]V, the maximum energy consumption per conversion is only 7.8[Formula: see text]nJ at [Formula: see text]45[Formula: see text]C.


2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.


Author(s):  
G D Gosain ◽  
R Sharma ◽  
Tae-wan Kim

In the modern era of design governed by economics and efficiency, the preliminary design of a semi-submersible is critically important because in an evolutionary design environment new designs evolve from the basic preliminary designs and the basic dimensions and configurations affect almost all the parameters related to the economics and efficiency (e.g. hydrodynamic response, stability, deck load and structural steel weight of the structure, etc.). The present paper is focused on exploring an optimum design method that aims not only at optimum motion characteristics but also optimum stability, manufacturing and operational efficiency. Our proposed method determines the most preferable optimum principal dimensions of a semi-submersible that satisfies the desired requirements for motion performance and stability at the preliminary stage of design. Our proposed design approach interlinks the mathematical design model with the global optimization techniques and this paper presents the preliminary design approach, the mathematical model of optimization. Finally, a real world design example of a semi-submersible is presented to show the applicability and efficiency of the proposed design optimization model at the preliminary stage of design.


Author(s):  
Xiuqin Chu ◽  
Na Li ◽  
Jun Wang ◽  
Yuhuan Luo ◽  
Feng Wu ◽  
...  
Keyword(s):  

2010 ◽  
Vol 19 (08) ◽  
pp. 1665-1687 ◽  
Author(s):  
MOHAMMAD REZA HOSSEINY FATEMI ◽  
HASAN F. ATES ◽  
ROSLI SALLEH

The sub-pixel motion estimation (SME), together with the interpolation of reference frames, is a computationally extensive part of the H.264 encoder that increases the memory requirement 16-times for each reference frame. Due to the huge computational complexity and memory requirement of the H.264 SME, its hardware architecture design is an important issue especially in high resolution or low power applications. To solve the above difficulties, we propose several optimization techniques in both algorithm and architecture levels. In the algorithm level, we propose a parabolic based algorithm for SME with quarter-pixel accuracy which reduces the computational budget by 94.35% and the memory access requirement by 98.5% in comparison to the standard interpolate and search method. In addition, a fast version of the proposed algorithm is presented that reduces the computational budget 46.28% further while maintaining the video quality. In the architecture level, we propose a novel bit-serial architecture for our algorithm. Due to advantages of the bit-serial architecture, it has a low gate count, high speed operation frequency, low density interconnection, and a reduced number of I/O pins. Also, several optimization techniques including the sum of absolute differences truncation, source sharing exploiting and power saving techniques are applied to the proposed architecture which reduce power consumption and area. Our design can save between 57.71–90.01% of area cost and improves the macroblock (MB) processing speed between 1.7–8.44 times when compared to previous designs. Implementation results show that our design can support real time HD1080 format with 20.3 k gate counts at the operation frequency of 144.9 MHz.


2003 ◽  
pp. 563-566 ◽  
Author(s):  
A. J. Strojwas ◽  
S. R. Nassif ◽  
S. W. Director

Sign in / Sign up

Export Citation Format

Share Document