Non-destructive S-parameter measurement of a hermetically encapsulated package with comparison to high-frequency simulation

Author(s):  
U. Pfeiffer ◽  
C. Schuster
Author(s):  
Potereau Manuel ◽  
Sebastien Fregonese ◽  
Arnaud Curutchet ◽  
Peter Baureis ◽  
Thomas Zimmer

2011 ◽  
Vol 2011 ◽  
pp. 1-16
Author(s):  
Ah Fatt Tong ◽  
Wei Meng Lim ◽  
Choon Beng Sia ◽  
Xiaopeng Yu ◽  
Wanlan Yang ◽  
...  

This paper presents the formation of the parasitic components that exist in the RF MOSFET structure during its high-frequency operation. The parasitic components are extracted from the transistor's S-parameter measurement, and its geometry dependence is studied with respect to its layout structure. Physical geometry equations are proposed to represent these parasitic components, and by implementing them into the RF model, a scalable RFCMOS model, that is, valid up to 49.85 GHz is demonstrated. A new verification technique is proposed to verify the quality of the developed scalable RFCMOS model. The proposed technique can shorten the verification time of the scalable RFCMOS model and ensure that the coded scalable model file is error-free and thus more reliable to use.


2006 ◽  
Vol 321-323 ◽  
pp. 968-971
Author(s):  
Won Su Park ◽  
Sang Woo Choi ◽  
Joon Hyun Lee ◽  
Kyeong Cheol Seo ◽  
Joon Hyung Byun

For improving quality of a carbon fiber reinforced composite material (CFRP) by preventing defects such as delamination and void, it should be inspected in fabrication process. Novel non-contacting evaluation technique is required because the transducer should be contacted on the CFRP in conventional ultrasonic technique during the non-destructive evaluation and these conventional contact techniques can not be applied in a novel fiber placement system. For the non-destructive evaluation of delamination in CFRP, various methods for the generation and reception of laser-generated ultrasound are applied using piezoelectric transducer, air-coupled transducer, wavelet transform technique etc. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Air-coupled transducer was tried to be adopted in reception of laser-generated guided wave generated by using linear slit array in order to generate high frequency guided wave with a frequency of 1.1 MHz. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer and linear slit array. Transmitted laser-generated ultrasonic wave was received on back-wall and its frequency was analyzed to establish inspecting technique to detect delamination by non-contact ultrasonic method. In a frequency spectrum analysis, intensity ratio of low frequency and center frequency was approvable parameter to detect delamination.


Sign in / Sign up

Export Citation Format

Share Document