Active building envelope system (ABE): Wind and solar-driven ventilation, electricity and heat pump

Author(s):  
Bor-Jang Tsai ◽  
Chien-Ho Lee
Keyword(s):  
2011 ◽  
Vol 347-353 ◽  
pp. 1801-1805
Author(s):  
Arif Hepbasli ◽  
Mustafa Tolga Balta ◽  
Zeyad Alsuhaibani

In this study, we considered a building, which had a volume of 336 m3 and a floor area of 120 m2, with indoor and outdoor air temperatures of 20 oC and 0 oC, respectively. For heating this building, we selected two options, namely (i) a ground-source (geothermal) heat pump system (Case 1), and (ii) a solar collector heating system (Case 2). We employed both energy and exergy analysis methods to assess their performances and compare them through energy and exergy efficiencies and sustainability index. We also investigated energy and exergy flows for this building and illustrated from the primary energy transformation through the heat production system and a distribution system to a heating system, and from there, via the indoor air, across the building envelope to the surrounding air. We calculated that the total exergy efficiencies for Cases 1 and 2 were 4.7%, and 26.1% while sustainability index values for both cases were 1.049 and 1.353 at a reference (dead) state temperature of 0 oC, respectively.


2019 ◽  
Vol 111 ◽  
pp. 04007
Author(s):  
Carsten Wemhoener ◽  
Simon Buesser ◽  
Lukas Rominger

Heat pumps are a promising building technology, especially for nearly Zero Energy Buildings (nZEB) to be introduced in the EU by the beginning of 2021 for all new buildings. Despite heat pumps already range among the most efficient heat generators, further efficiency and cost optimisation is seen in system integration as well as in adapted design and control for the application in nZEB. IEA HPT Annex 49 investigates heat pump application in nZEB by simulation and field monitoring in order to evaluate integration options with other building technologies, thermal and electrical storages, the building envelope and the ground. Moreover, design and control for the loads in nZEB and the integration of nZEB into connected energy grids are considered. The investigations are accompanied by field monitoring of heat pumps in different nZEB applications and climate conditions in order to relate calculation results to the real operation and identify optimisation potentials. Expected results of the Annex 49 are recommendations regarding heat pump integration options and related design and control as well as real world heat pump performance in monitored nZEB. The paper gives an overview on the Annex 49 project and national contributions and will present first interim results of the Annex Tasks.


2021 ◽  
Vol 65 (1) ◽  
pp. 12-22
Author(s):  
Silvia Cesari ◽  
Alessia Natali ◽  
Barbara Larwa ◽  
Eleonora Baccega ◽  
Elena Mainardi ◽  
...  

The current paper presents the state-of-the-art of the ongoing IDEAS research project, funded under the Horizon 2020 EU framework programme. The project involves fourteen partners from six European countries and proposes a multi-source cost-effective renewable energy system for the decarbonisation of the building envelope. The system features a radiant floor fed by a heat pump for the building thermal management. The heat pump can exploit sun, air, and/or ground as thermal sources through the use of photovoltaic/thermal solar panels, air heat exchangers, and shallow ground flat-panel heat exchangers. Thermal energy storage is achieved by means of phase change materials spread along several system components, such as: radiant floor to increase its thermal inertia, solar panels for cooling purposes, ground to enhance soil thermal capacity. Within the project framework, a small-scale building, featuring a plethora of sensors for test purposes, and two large-scale buildings are meant to be equipped with the renewable energy system proposed. The small-scale building is currently in operation, and the first results are discussed in the present work. Preliminary data suggest that while multi-source systems coupled with heat pumps are particularly effective, it is complex to obtain suitable thermal energy storages on urban scale.


2019 ◽  
Vol 11 (12) ◽  
pp. 3282 ◽  
Author(s):  
Wenting Ma ◽  
Moon Keun Kim ◽  
Jianli Hao

This paper studies the long-term performance of a Ground Source Heat Pump (GSHP) system and a Water Source Heat Pump (WSHP) system for an office building in Suzhou, which is a hot summer and cold winter climate region of China. The hot summer and cold winter region is the most urbanized region of China and has subtropical monsoon climate, therefore, Heating, Ventilation, and Air Conditioning (HVAC) systems are in great demand. Due to the fact that 42.5% of Suzhou’s total area is covered by lakes and rivers, the city has an abundance of surface water resources. Based on Suzhou’s meteorological data and the thermal characteristics of the building envelope, an office building model was created and the dynamic cooling and heating load was calculated using Transient System Simulation (TRNSYS) simulation software. Two numerical HVAC modeling systems were created: a GSHP system for which the data of an in-situ Thermal Response Test (TRT) was used and a WSHP system for which the Tai Lake water temperature was used. Simulating the performance of both systems over a 20-year period, the two systems were analyzed for their Coefficient of Performance (COP), heat source temperature variation, and energy consumption. The results show that the GSHP system causes ground heat accumulation, which reduces the system’s COP and increases energy consumption. The study also revealed that compared with the GSHP system, the WSHP system has a more stable long-term performance for buildings in Suzhou.


2008 ◽  
Vol 40 (10) ◽  
pp. 1799-1804 ◽  
Author(s):  
M. Tolga Balta ◽  
Yildiz Kalinci ◽  
Arif Hepbasli

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5098
Author(s):  
Matteo Dongellini ◽  
Paolo Valdiserri ◽  
Claudia Naldi ◽  
Gian Luca Morini

The influence of emitters, heat pump size and building envelope thermal inertia was investigated on the energy consumption of a heat pump-based heating system with a numerical study performed with the dynamic software TRNSYS. An algorithm based on a Thermal Inertia Control Logic (TICL), which can exploit the capability of the building envelope to store thermal energy, has been applied. When the proposed algorithm is employed, the indoor air temperature set-point is increased when the outdoor temperature is larger than the bivalent temperature of the building-heat pump system. Different configurations of the heating system were simulated considering either convective (fan-coil) or radiant (radiant floor) emitters coupled to a variable-speed air-to-water heat pump. Simulations have been carried out considering a reference building derived from the IEA SHC Task 44 and evaluating the influence of the proposed control logic on both the heat pump seasonal energy performance and the internal comfort conditions perceived by the building users. The obtained results highlight how the introduced TICL can guarantee the use of downsized heat pumps, coupled to radiant emitters, with a significant enhancement of the seasonal performance factor up to 10% and a slight improvement of comfort conditions. On the other hand, when convective terminal units are considered the proposed logic is not effective and the overall energy consumption of the system increases up to 15%.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Sign in / Sign up

Export Citation Format

Share Document