IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 26030-26040 ◽  
Author(s):  
Haiyi Kong ◽  
Chenguang Yang ◽  
Guang Li ◽  
Shi-Lu Dai

2013 ◽  
Vol 706-708 ◽  
pp. 691-694
Author(s):  
Tian Lin Song ◽  
Ya Ping Lu ◽  
Hai Qing Liu

It adopts the Arduino controller and control system of the extension circuit to complete all kinds of motions for the more joints’ bionic robotic fish of the different structures. Adding different kinds of sensors, it can also achieve many functions, such as obstacle avoidance, trace, color discrimination, etc.


10.5772/5783 ◽  
2005 ◽  
Vol 2 (3) ◽  
pp. 26 ◽  
Author(s):  
Hanafiah Yussof ◽  
Mitsuhiro Yamano ◽  
Yasuo Nasu ◽  
Kazuhisa Mitobe ◽  
Masahiro Ohka

This paper describes the development of an autonomous obstacle-avoidance method that operates in conjunction with groping locomotion on the humanoid robot Bonten-Maru II. Present studies on groping locomotion consist of basic research in which humanoid robot recognizes its surroundings by touching and groping with its arm on the flat surface of a wall. The robot responds to the surroundings by performing corrections to its orientation and locomotion direction. During groping locomotion, however, the existence of obstacles within the correction area creates the possibility of collisions. The objective of this paper is to develop an autonomous method to avoid obstacles in the correction area by applying suitable algorithms to the humanoid robot's control system. In order to recognize its surroundings, six-axis force sensors were attached to both robotic arms as end effectors for force control. The proposed algorithm refers to the rotation angle of the humanoid robot's leg joints due to trajectory generation. The algorithm relates to the groping locomotion via the measured groping angle and motions of arms. Using Bonten-Maru II, groping experiments were conducted on a wall's surface to obtain wall orientation data. By employing these data, the humanoid robot performed the proposed method autonomously to avoid an obstacle present in the correction area. Results indicate that the humanoid robot can recognize the existence of an obstacle and avoid it by generating suitable trajectories in its legs.


2013 ◽  
Vol 791-793 ◽  
pp. 1921-1924
Author(s):  
Ke Ling Luo ◽  
Xu Dong Li ◽  
De Rui Song ◽  
Ping Wang ◽  
Jiao Fu ◽  
...  

The garbage salvage ship is made from polystyrene plastic as hull framework and STC89C52 single-chip microcomputer to control the core, and consists of DC gear motor, photoelectric sensor, power circuit and other circuits. The system uses STC89C52 to control the boat to move forward, backward or turn through the I/O port. Tracing is finished by infrared obstacle avoidance sensor E18-D80NK. Working manner of the infrared obstacle avoidance sensor E18-D80NK was introduced and its application scheme based on STC89C52 single-chip microcomputer in the control system of garbage salvage ship was put forward.


2013 ◽  
Vol 756-759 ◽  
pp. 372-375
Author(s):  
Hong Bin Tian

In order to increase the movement capability of the robotic visual system in three-dimension space, the paper designs an obstacle-avoidance algorithm based on robotic movement visual by effectively processing the visual information colleted by the robotics. This paper establishes a structural model of coordination control system. The obstacles can be effectively identified and avoided by the obstacle-avoidance theory in the robotics coordination operation. The mathematical model of the obstacle-avoidance algorithm can predict the locations of the obstacles. The experiment proves the proposed algorithm can avoid the obstacles in three-dimension space and the accuracy is very high.


1995 ◽  
Vol 13 (3) ◽  
pp. 247-262 ◽  
Author(s):  
Alexander Douglas ◽  
Yangsheng Xu

Sign in / Sign up

Export Citation Format

Share Document