Switchable 2-port Aluminum Nitride MEMS resonator using monolithically integrated 3.6 THz cut-off frequency phase-change switches

Author(s):  
Gwendolyn Hummel ◽  
Matteo Rinaldi
2005 ◽  
Vol 502 ◽  
pp. 81-86 ◽  
Author(s):  
Yukio Makino

Hardness of the pseudobinary transition metal aluminum nitride (T-Al-N) films is improved with increasing the AlN content as far as the B1structure is maintained. A drastic change in the compositional dependence of the hardness corresponds to the phase change of the pseudobinary nitride from B1(NaCl) to B4(wurtzite) structure. Predicted value of AlN content for the drastic change agrees with the AlN content determined experimentally. Hardness of various T-Al-N films was closely correlated with the bulk modulus calculated from interatomic distance based on the power functional formula. The improvement of hardness is attributed to the inherent increase of bulk modulus due to dissolution of AlN into transition metal nitride.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6599
Author(s):  
Katja Meinel ◽  
Marcel Melzer ◽  
Chris Stoeckel ◽  
Alexey Shaporin ◽  
Roman Forke ◽  
...  

A 2D scanning micromirror with piezoelectric thin film aluminum nitride (AlN), separately used as actuator and sensor material, is presented. For endoscopic applications, such as fluorescence microscopy, the devices have a mirror plate diameter of 0.7 mm with a 4 mm2 chip footprint. After an initial design optimization procedure, two micromirror designs were realized. Different spring parameters for x- and y-tilt were chosen to generate spiral (Design 1) or Lissajous (Design 2) scan patterns. An additional layout, with integrated tilt angle sensors, was introduced (Design 1-S) to enable a closed-loop control. The micromirror devices were monolithically fabricated in 150 mm silicon-on-insulator (SOI) technology. Si (111) was used as the device silicon layer to support a high C-axis oriented growth of AlN. The fabricated micromirror devices were characterized in terms of their scanning and sensor characteristics in air. A scan angle of 91.2° was reached for Design 1 at 13 834 Hz and 50 V. For Design 2 a scan angle of 92.4° at 12 060 Hz, and 123.9° at 13 145 Hz, was reached at 50 V for the x- and y-axis, respectively. The desired 2D scan patterns were successfully generated. A sensor angle sensitivity of 1.9 pC/° was achieved.


Sign in / Sign up

Export Citation Format

Share Document