A novel flexible eddy-current probe with high sensitivity for NDT

Author(s):  
Ruifang Xie ◽  
Weihong Zhou ◽  
Dixiang Chen ◽  
Mengchun Pan ◽  
Ying Tang
2019 ◽  
Vol 102 ◽  
pp. 90-95 ◽  
Author(s):  
Dongfeng He ◽  
Zhi Wang ◽  
Masahiro Kusano ◽  
Satoshi Kishimoto ◽  
Makoto Watanabe

2007 ◽  
Vol 25 (1-4) ◽  
pp. 369-373
Author(s):  
Tomasz Chady ◽  
Przemysław Łopato ◽  
Ryszard Sikora ◽  
Mieczysław Komorowski

Author(s):  
Ziyu Zhao ◽  
Zhenxia Liu ◽  
Yaguo Lyu ◽  
Xinxin Xu

A high precision eddy current sensor for tip clearance measurement was proposed to assess the dynamic tip clearance measurement for aero-engine rotator. Based on the Lenz’s law, the eddy current sensor has high sensitivity, quick response speed and strong anti-interference capability, in addition, the simple geometry and easy installation are its main merits. The aim is to study the influence of planar coil structure parameters and excitation signal parameters on the sensor coil measurement, provide the basis for design of practical sensor in turbine tip clearance measurement. The dynamic calibration experiment verified the designed planar sensor coil, the results indicated the sensor resolution was 10μm and the measurement range was not less than 3mm. The dynamic experiment proved the measuring range, resolution, response speed of designed sensor can meet the requirement of turbine blade tip clearance measurement. The work provides experience in eddy current sensor design in different application, not only in turbine. And the future work will focus on the high temperature issues.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3441 ◽  
Author(s):  
Niklas König ◽  
Matthias Nienhaus

Position estimation techniques for solenoid actuators are successfully used in a wide field of applications requiring monitoring functionality without the need for additional sensors. Most techniques, which also include standstill condition, are based on the identification of the differential inductance, a parameter that exhibits high sensitivity towards position variations. The differential inductance of some actuators shows a non-monotonic dependency over the position. This leads to ambiguities in position estimation. Nevertheless, a unique position estimation in standstill condition without prior knowledge of the actuator state is highly desired. In this work, the eddy current losses inside the actuator are identified in terms of a parallel resistor and are exploited in order to solve the ambiguities in position estimation. Compared to other state-of-the-art techniques, the differential inductance and the parallel resistance are estimated online by approaches requiring low implementation and computation effort. Furthermore, a data fusion algorithm for position estimation based on a neural network is proposed. Experimental results involving a use case scenario of an end-position detection for a switching solenoid actuator prove the uniqueness, the precision and the high signal-to-noise ratio of the obtained position estimate. The proposed approach therefore allows the unique estimation of the actuator position including standstill condition suitable for low-cost applications demanding low implementation effort.


1999 ◽  
Vol 591 ◽  
Author(s):  
E. S. Boltz ◽  
S. G. Albanna ◽  
A. R. Stallings ◽  
Y. H. Spooner ◽  
J. P. Abeyta

ABSTRACTTraditional coil-based eddy-current sensors are severely limited in their ability to detect small buried defects, defects under fasteners and deeply buried cracks and corrosion. TPL has developed eddy-current sensors and arrays based on the use of Giant Magnetoresistance (GMR) sensor elements. GMR offers high sensitivity, very wide bandwidth and low noise from DC to over 1 GHz. Coupled with the ability to fabricate GMR sensors with micron-level dimensions, these new eddy-current sensors offer an ideal technology for inspections requiring high spatial resolution and low-frequency, deeply-penetrating fields.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Grzegorz Psuj ◽  
Tomasz Chady ◽  
Cesar Giron Camerini

The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS). Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.


Sign in / Sign up

Export Citation Format

Share Document