Simulation and Modeling Investigation into Catastrophic Front-Side Bursting under Hypervelocity Impact on Pressure Vessels

Author(s):  
Gai Fangfang ◽  
Liu Xun ◽  
Qiao Mu
1997 ◽  
Vol 20 (6-10) ◽  
pp. 579-590 ◽  
Author(s):  
Scott A. Mullin ◽  
Herve Couque ◽  
Burton G. Cour-Palais ◽  
Donald J. Grosch ◽  
James D. Walker

1999 ◽  
Vol 23 (1) ◽  
pp. 905-919 ◽  
Author(s):  
Igor Y. Telitchev ◽  
Frank K. Schäfer ◽  
Eberhard E. Schneider ◽  
Michel Lambert

Author(s):  
William P. Schonberg

Abstract Most spacecraft have at least one pressurized vessel on board. One of the primary design considerations for earth-orbiting spacecraft is the anticipation and mitigation of the possible damage that might occur in the event of a micrometeoroid or orbital debris (MMOD) particle impact. To prevent mission failure and possibly loss of life, protection against perforation by such high-speed impacts must be included. In addition to a hole, it is possible that, for certain pressure vessel designs, materials, impact parameters, and operating conditions, a pressure vessel may experience catastrophic failure (i.e. rupture) as a result of a hypervelocity impact. If such a tank rupture were to occur on-orbit following an MMOD impact, not only could it lead to loss of spacecraft, but quite possibly, for human missions, it could also result in loss of life. In this paper we present an update to a Rupture Limit Equation, or RLE, for composite overwrapped pressure vessels (COPVs) that was presented previously. The update consists of modified RLE parameters and coefficients that were obtained after the RLE was re-derived using new / additional data. The updated RLE functions in a manner similar to that of a ballistic limit equation, or BLE, that is, it differentiates between regions of operating and impact conditions that, given a tank wall perforation, would result in either tank rupture or only a relatively small hole or crack. This is an important consideration in the design of a COPV pressurized tank – if possible, design parameters and operating conditions should be chosen such that additional sizable debris (such as that which would be created in the event of tank rupture or catastrophic failure) is not created as a result of an on-orbit MMOD particle impact.


Author(s):  
Igor Telichev

The present paper is devoted to analysis of burst conditions of the pipeline-in-service and vessel under high pressure subjected to the debris impact due to accidental explosion. The central concern of this study is to determine the border between simple perforation and catastrophic fracture of impact damaged pressurized structure. Under certain conditions vessel perforation from the front side can lead to unstable, rapid crack growth (“unzipping”). The pressure vessel of the relatively small size can be damaged from the rear side as well. As a consequence, two main classes of catastrophic failure of such structures are likely to occur: structure fracture from the front side and failure from the rear side. Damage patterns and mechanisms leading to unstable crack growth are discussed. The impact holes in a wall of pressurized structure are considered as a crack-like defect. By the model suggested, the cracked area around the penetrated hole is simulated by two radial cracks emanating from the rim of a hole. So the diameter of the model hole is equal to the diameter of the front impact hole; the length of the crack is bounded by a damage zone, which is a zone of spall cracks adjacent to the perforated hole. In a gas-filled cylinder shell the stresses in the circumferential direction are twice the longitudinal stresses. Thus, in the process of fracturing the cracks tend to run longitudinally, perpendicular to the hoop stress. By this reason the hypothetical radial cracks are normal to the hoop stress. Nonlinear fracture mechanics techniques were used to analyze and predict whether a wall perforation will lead to mere leakage of gas, or whether an unstable crack will run and destroy the pressurized structure. The problem was solved by numerical method of singular integral equations in Chebyshev’s polynomials. A developed model was successfully applied to the simulation of experimental results.


2013 ◽  
Vol 577-578 ◽  
pp. 629-632
Author(s):  
Gong Shun Guan ◽  
Qiang Bi ◽  
Yu Zhang

Shield structure based on ceramic coating on aluminum bumper was designed, and a series of hypervelocity impact tests were practiced with a two-stage light gas gun facility. Impact velocities were varied between1.5km/s and 5.0km/s. The diameter of projectiles were 3.97mm and 6.35mm respectively. The impact angle was 0°. The damage of the ceramic coating on aluminum bumper under hypervelocity impact was studied. It was found that the ceramic coating on aluminum bumper could help enhancing the protection performance of shield to resist hypervelocity impact. The results indicated when the ceramic coating is on the front side of aluminum bumper, it was good for comminuting projectile and weakening the kinetic energy of projectile. For a certain aluminum bumper, existing a critical thickness of ceramic coating in which capability of Whipple shield to resist hypervelocity impact is the best. On this basis, the proposal of the optimum design for ceramic coating on aluminum bumper was made.


2007 ◽  
Vol 348-349 ◽  
pp. 785-788 ◽  
Author(s):  
Gong Shun Guan ◽  
Bao Jun Pang ◽  
Yue Ha

Impacts of meteoroids and space debris on pressure vessels can have detrimental consequences for any mission. Depending on the parameters of the impacting particle and the characteristic of the vessel, the damages can range from relatively uncritical craters in the vessel’s surface to the catastrophic bursting of vessels, which besides the loss of vessel may result in severe secondary damages to surrounding components. In order to investigate failure mechanisms of thin-walled aluminum pressure vessels under hypervelocity impact of space debris, a non-powder two-stage light gas gun was used to launch Al-sphere projectiles impacting on unshielded and shielded vessels. Damage patterns and mechanisms leading to catastrophic rupture are discussed. Experimental results indicate that the impact kinetic energy of the projectile and the gas pressure in the vessel have an important effect on the damage modes of the vessel. On the one hand, high pressure gas can lead to a vessel blast. On the other hand, high pressure gas can mitigate the impact of the debris cloud on the rear wall of the vessel. Catastrophic rupture of unshielded gas-filled vessels can be avoided when the impact energy is less than a certain limit value. When the bumper is perforated, damage of shielded pressure vessel might be fatal for vessels with high gas pressure.


Author(s):  
Igor Ye. Telitchev

The present paper is devoted to analysis of burst conditions of thin-walled cylindrical pressure vessels subjected to hypervelocity impact of space debris particles. Two types of gas-filled pressure vessels onboard the International Space Station were considered: inhabited or laboratory pressurized modules and onboard system vessels with a gas under high pressure. The central concern of this study is to determine the border between simple perforation and catastrophic fracture of gas-filled pressure vessels of both types under hypervelocity impact. Non-linear fracture mechanics techniques were used to analyze and predict whether a vessel perforation will lead to mere leakage of gas, or whether unstable crack propagation will occur that could lead to catastrophic fracture of the vessel. Damage patterns and mechanisms leading to unstable crack growth are discussed. A model of fracture of an impact damaged pressure vessel is presented. A developed model was successfully applied to the simulation of experimental results obtained at Ernst-Mach-Institute (Germany).


Sign in / Sign up

Export Citation Format

Share Document