Simulation-based HW/SW co-debugging for field-programmable systems-on-chip

Author(s):  
Ruediger Willenberg ◽  
Paul Chow
2008 ◽  
Vol 32 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Paolo Zicari ◽  
Pasquale Corsonello ◽  
Stefania Perri ◽  
Giuseppe Cocorullo

Author(s):  
Antonio Miele ◽  
Christian Pilato ◽  
Donatella Sciuto

The efficient analysis and exploration of mapping solutions of a parallel application on a heterogeneous Multi-Processor Systems-on-Chip (MPSoCs) is usually a challenging task in system-level design, in particular when the architecture integrates hardware cores that may expose reconfigurable features. This paper proposes a system-level design framework based on SystemC simulations for fulfilling this task, featuring (i) an automated flow for the generation of timing models for the hardware cores starting from the application source code, (ii) an enhanced simulation environment for SystemC architectures enabling the specification and modification of mapping choices only by changing an XML descriptor, and (iii) a flexible controller of the simulation environment supporting the exploration of various mapping solutions featuring a customizable engine. The proposed framework has been validated with a case study considering an image processing application to show the possibility to automatically exploring alternative solutions onto a reconfigurable MPSoC platform.


Author(s):  
Omar Salem Baans ◽  
Asral Bahari Jambek

<span>ARM processors are widely used in embedded systems. They are often implemented as microcontrollers, field-programmable gate arrays (FPGAs) or systems-on-chip. In this paper, a variety of ARM processor platform implementations are reviewed, such as implementation into a microcontroller, a system-on-chip and a hybrid ARM-FPGA platform. Furthermore, the implementation of a specific ARM processor, the Cortex-A9 processor, into a system-on-chip (SoC) on an FPGA is discussed using Xilinx’s Vivado and SDK software system and execution on a Xilinx Zynq Board.</span>


2021 ◽  
Vol 26 (6) ◽  
pp. 1-25
Author(s):  
Dennis R. E. Gnad ◽  
Cong Dang Khoa Nguyen ◽  
Syed Hashim Gillani ◽  
Mehdi B. Tahoori

Field Programmable Gate Arrays ( FPGAs ) are increasingly used in cloud applications and being integrated into Systems-on-Chip. For these systems, various side-channel attacks on cryptographic implementations have been reported, motivating one to apply proper countermeasures. Beyond cryptographic implementations, maliciously introduced covert channel receivers and transmitters can allow one to exfiltrate other secret information from the FPGA. In this article, we present a fast covert channel on FPGAs, which exploits the on-chip power distribution network. This can be achieved without any logical connection between the transmitter and receiver blocks. Compared to a recently published covert channel with an estimated 4.8 Mbit/s transmission speed, we show 8 Mbit/s transmission and reduced errors from around 3% to less than 0.003%. Furthermore, we demonstrate proper transmissions of word-size messages and test the channel in the presence of noise generated from other residing tenants’ modules in the FPGA. When we place and operate other co-tenant modules that require 85% of the total FPGA area, the error rate increases to 0.02%, depending on the platform and setup. This error rate is still reasonably low for a covert channel. Overall, the transmitter and receiver work with less than 3–5% FPGA LUT resources together. We also show the feasibility of other types of covert channel transmitters, in the form of synchronous circuits within the FPGA.


2010 ◽  
Vol 3 (3) ◽  
pp. 218-231
Author(s):  
Ni Zhou ◽  
Fei Qiao ◽  
Huazhong Yang ◽  
Hui Wang

2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 183
Author(s):  
Jose Ricardo Gomez-Rodriguez ◽  
Remberto Sandoval-Arechiga ◽  
Salvador Ibarra-Delgado ◽  
Viktor Ivan Rodriguez-Abdala ◽  
Jose Luis Vazquez-Avila ◽  
...  

Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.


Sign in / Sign up

Export Citation Format

Share Document