Implementation of Combined System between Perturb & Observe and Incremental Conductance Technique for MPPT in PV System

Author(s):  
Sunil Jagtap ◽  
Aniket Khandekar
Author(s):  
Bennacer El hassouni ◽  
Abdellatif G.AMRANI ◽  
Ali HADDI

Due to the very high initial investment cost of photovoltaic systems and their low conversion efficiency, it is essential to operate PV generators at the point of maximum power (MPP). Within this framework, our first objective in this thesis is to develop and improve the PV system, contributing to optimizing the PV panels' energy through a DC-DC power electronics converter. For this reason, a further improvement of the incremental conductance technique is proposed to improve the MPP tracking capability of the PV system when the level of solar irradiation is suddenly increased or when the load undergoes variations. The new technique includes two processing phases: a calculation phase to improve the tracking speed and a regulation phase to improve MPP tracking efficiency. In order to evaluate its performance, the proposed new method is compared to other methods, namely the Incremental conventional conductance (INC) technique and the Modified Variable Size Incremental conductance (M-INC) technique. The results show that the proposed technique's overall tracking speed is 3.7 times faster than the conventional INC technique and 1.52 times faster than the modified INC technique. Also, the tracking power losses with the proposed technique are lower compared to other techniques. In terms of overall efficiency, the proposed technique is the most efficient with an efficiency of 94.83%, followed by the modified technique with an overall efficiency of 87.94%. In comparison, the conventional INC technique's efficiency is the lowest and does not exceed 83.33%.


Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1140-1148

The extensive usage of solar has extended the opportunity of research to increase the efficiency of PV module. Maximum Power Point Tracking technique plays an important role. In P & O and Incremental conductance the power produced is less. In this paper a Fuzzy based P & O and Fuzzy based Incremental Conductance MPPT techniques are presented to extract the maximum power from the photovoltaic system by considering the dynamic variation in irradiations and temperature also. Here the 100 kW PV array is considered and it is connected to the utility grid via a DC-DC boost converter of 500volts with a 3 phase three level voltage source converter. The result is obtained by the MAT LAB Simulink and the same is appraised with the traditional P & O and Incremental conductance. The PV System produces the maximum power by the application of Fuzzy based incremental Technique compared to conventional methods.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4153 ◽  
Author(s):  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
Qiang Ling ◽  
Muhammad Imran Khan ◽  
Omar M. Aldossary

In this article, a novel maximum power point tracking (MPPT) controller for the fast-changing irradiance of photovoltaic (PV) systems is introduced. Our technique utilizes a modified incremental conductance (IC) algorithm for the efficient and fast tracking of MPP. The proposed system has a simple implementation, fast tracking, and achieved steady-state oscillation. Traditional MPPT techniques use a tradeoff between steady-state and transition-state parameters. The shortfalls of various techniques are studied. A comprehensive comparative study is done to test various existing techniques against the proposed technique. The common parameters discussed in this study are fast convergence, efficiency, and reduced oscillations. The proposed method successfully addresses these issues and improves the results significantly by using a proportional integral deferential (PID) controller with a genetic algorithm (GA) to predict the variable step size of the IC-based MPPT technique. The system is designed and tested against the perturbation and observation (P&O)-based MPPT technique. Our technique effectively detects global maxima (GM) for fast-changing irradiance due to the adopted GA-based tuning of the controller. A comparative analysis of the results proves the superior performance and capabilities to track GM in fewer iterations.


2021 ◽  
pp. 256-265
Author(s):  
N. Rai ◽  
A. Abbadi ◽  
F. Hamidia ◽  
B. Kanouni ◽  
A. Kahlessenane

2011 ◽  
Vol 480-481 ◽  
pp. 739-744
Author(s):  
Kuei Hsiang Chao ◽  
Yu Hsu Lee

In this paper, a novel incremental conductance (INC) maximum power point tracking (MPPT) method based on extension theory is developed to make full use of photovoltaic (PV) array output power. The proposed method can adjust the step size to track the PV array’s maximum power point (MPP) automatically. Compared with the conventional fixed step size INC method, the presented approach is able to effectively improve the dynamic response and steady state performance of a PV system simultaneously. A theoretical analysis and the design principle of the proposed method are described in detail. Some simulation results are performed to verify the effectiveness of the proposed MPPT method.


Sign in / Sign up

Export Citation Format

Share Document