scholarly journals Energy Sustainability Study of a Rural ICT Telecenter at the Bario Highland

Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.

2017 ◽  
Vol 9 (9) ◽  
pp. 1611 ◽  
Author(s):  
Mazhar Baloch ◽  
Safdar Abro ◽  
Ghulam Sarwar Kaloi ◽  
Nayyar Mirjat ◽  
Sohaib Tahir ◽  
...  

The non-renewable energy resources are limited and depleting gradually. As such, energy security has attained the greatest amount of attention globally than ever before. In the meantime, energy crises are already affecting the developing countries such as Pakistan, even though one-third of the population of the country is not even not connected to the national electricity grid. The population with access to on-grid electricity is enduring load shedding of more than 12 h a day. This situation is alarming and require immediate attention is required so as to add alternative energy resources to the country, which has long been relying on imported fuels. It is, therefore, high time that the abundant potential in the renewable energy resources of Pakistan such as solar, wind, and biomass are harnessed. These renewable energy resources are economical and environmentally friendly, and thus considered as sustainable, and the utilization of these in meeting energy demands can help to conserve conventional resources early diminishing. This paper provides a detailed description of the energy consumption and load-shedding scenario in Pakistan thereby focusing specifically Sindh and Baluchistan provinces. Since, wind energy is considered one of the cost-effective renewable resources, six potential sites in these two provinces are considered in this study. These sites lie within 250 km of the southeastern and 800 km of the southwestern regions of Pakistan. One-year wind speed data have been reported for variable heights of these proposed sites which represent to have an annual average wind speed of 6.63 m/s and 5.33 m/s respectively. The power generation data for these location of two provinces is 7.653 GWh, and 5.456 GWh per annum respectively. This study also elaborates on the advantages and disadvantages of harvesting and installing the wind energy and provides a technical proposal for the generation of electricity from the wind in the selected remote zones which are off the national grid. The findings of this paper will help concerned government departments to devise appropriate policies and attract investment in the wind energy sector to eradicate the on-going electricity crisis.


Author(s):  
Sudip K. Mazumder ◽  
Rajni K. Burra

We describe an energy-efficient, fuel cell (FC) powerconditioning system (PCS) for stationary application, which draws practically zero switching-ripple current from the FC and can potentially meet the $40/kW cost target. The PCS consists of a zero-ripple boost converter (ZRBC) followed by a soft-switched and multi-level high-frequency (HF) inverter and a single-phase cycloconverter. The zero-ripple input inductor significantly reduces the input current ripple which may be necessary to enhance the long-term durability of the fuel cell. A new phase-shifted sine-wave modulation of the multi-level high frequency inverter is proposed which results in the zero voltage turn-on (ZVS) of all four switches (without the use of any auxiliary circuit components). For such a sine-wave modulation technique a > 90 % ZVS range is obtained from 25% of the full load to full load. Further, the line-frequency switching of the cycloconverter (at close to unity power factor) results in extremely low switching losses. The intermediate high voltage DC (HVDC) bus facilitates the inclusion of power systems based on other forms of alternative-energy techniques. A cost effective 1 kW prototype of the proposed PCS is built, which achieved a high overall efficiency. We present a detailed description of the operation of the PCS along with its key features and advantages. Finally, experimental results showing the performance and operation of the PCS are demonstrated.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6132
Author(s):  
Govind Joshi ◽  
Salman Mohagheghi

One of the most critical challenges for modern power systems is to reliably supply electricity to its consumers during and in the aftermath of natural disasters. As our dependence on electrical power has increased over the years, long-term power outages can lead to devastating impacts on affected communities. Furthermore, power outages can halt the operation of water treatment plants, leading to shortages in clean water, which is essential during post-disaster recovery. One way to address this is to temporarily reconfigure power and water networks into localized networks, i.e., electric microgrids and water micro-nets, that utilize local resources to supply local demand independently of the main power grid and/or water network. Utilizing distributed energy resources such as wind and solar and treating wastewater locally for potable reuse can provide the operational flexibility for such systems to operate sustainably. However, due to uncertainties in both renewable energy generation and electric/water consumption, ensuring sustainable operation is a challenging task. In this paper, an optimal operational strategy is proposed for an islanded microgrid/micro-net, considering the stochastic nature of renewable energy resources, electric demand, and water demand. An energy storage system is modeled to address the uncertainty in power generation and demand, in conjunction with local water storage and wastewater treatment to accommodate variable water demands. A two-stage stochastic programming model is formulated and solved to determine an optimal operation strategy for the combined system.


Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


2011 ◽  
Vol 347-353 ◽  
pp. 3846-3855 ◽  
Author(s):  
Ali Baniyounes ◽  
Gang Liu ◽  
M. G. Rasul ◽  
M. M. K. Khan

In Australia the future demand for energy is predicted to increase rapidly. Conventional energy resources soaring prices and environmental impact have increased the interest in renewable energy technology. As a result of that the Australian government is promoting renewable energy; such as wind, geothermal, solar and hydropower. These types of energy are believed to be cost-effective and environmentally friendly. Renewable energy availability is controlled by climatic conditions such as solar radiation, wind speed and temperature. This paper aims to assess the potential of renewable energy resources, in particular wind and solar energy in an Australian subtropical region (Central and North Queensland) namely, Gladstone, Emerald, Rockhampton, Yeppoon, Townsville, and Cairns. Analysis is done by using the latest statistical state of Queensland energy information, along with measured data history of wind speed, solar irradiations, air temperature, relative humidity, and atmospheric pressure for those sites. This study has also shown that national assessments of solar and wind energy potential can be improved by improving local climatic data assessments using spatial databases of Central and North Queensland areas.


Author(s):  
Birol I. Kilkis

Effective utilization of low-enthalpy energy resources in heating, ventilating, and air-conditioning (HVAC) of sustainable buildings require a careful optimization to assure the most economical coupling of HVAC systems with low-enthalpy energy resources. In one of the two separate prior studies an optimization algorithm for the optimal coupling of heat pumps and radiant panel heating and cooling systems was developed. In the second prior study an optimization algorithm for driving ground source heat pumps with wind turbines was developed. In this study these two algorithms were combined for a compound utilization of alternative energy resources. This paper describes the optimization algorithms, emphasizes their importance in achieving a cost effective combined application, and discusses the results obtained from the examples given.


2021 ◽  
Vol 304 ◽  
pp. 01010
Author(s):  
Adel Aljwary ◽  
Ziyodulla Yusupov ◽  
Olimjon Toirov ◽  
Rustam Shokirov

Photovoltaic (PV) system as one part of distributed energy resources is becoming an alternative for low and medium distribution network of microgrid. By the reason of a wide implementation of power electronic and non-linear loads, harmonics distortion is one of the main problems for the power systems. There are several filter types to mitigate the harmonics. The passive filter is distinguished by its simplicity and economical options from another filters. In this paper, the passive single tuned filter (STF) is used to minimize harmonics distortion in standalone PV based microgrid. A solar PV array is modelled as an ideal single diode model (ISDM) and used to supply electrical power to an AC load. The simulation results are executed on MATLAB/Simulink show that STF is effective in mitigating the voltage total harmonic distortion (VTHD) and the current total harmonic distortion (ITHD) with enhancing the output power quality.


Sign in / Sign up

Export Citation Format

Share Document