A Workload Balance Control Mechanism on DOCSIS Downstream Multiple Channels

Author(s):  
Wei-Tsong Lee ◽  
Hsin-Wen Wei ◽  
Yao-Chiang Yang
2020 ◽  
Vol 31 (01) ◽  
pp. 2050049 ◽  
Author(s):  
Zeqiong Lv ◽  
Tingting Bao ◽  
Nan Zhou ◽  
Hong Peng ◽  
Xiangnian Huang ◽  
...  

This paper discusses a new variant of spiking neural P systems (in short, SNP systems), spiking neural P systems with extended channel rules (in short, SNP–ECR systems). SNP–ECR systems are a class of distributed parallel computing models. In SNP–ECR systems, a new type of spiking rule is introduced, called ECR. With an ECR, a neuron can send the different numbers of spikes to its subsequent neurons. Therefore, SNP–ECR systems can provide a stronger firing control mechanism compared with SNP systems and the variant with multiple channels. We discuss the Turing universality of SNP–ECR systems. It is proven that SNP–ECR systems as number generating/accepting devices are Turing universal. Moreover, we provide a small universal SNP–ECR system as function computing devices.


2008 ◽  
Vol 100 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
Kei Masani ◽  
Albert H. Vette ◽  
Noritaka Kawashima ◽  
Milos R. Popovic

The delay of the sensory-motor feedback loop is a destabilizing factor within the neural control mechanism of quiet standing. The purposes of this study were 1) to experimentally identify the neuromusculoskeletal torque-generation process during standing posture and 2) to investigate the effect of the delay induced by this system on the control mechanism of balance during quiet standing. Ten healthy adults participated in this study. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the natural ankle angle during quiet standing. Each subject was asked to mimic the ankle torque fluctuation by exerting voluntary ankle extension while keeping the supported standing posture. Using the rectified soleus electromyogram as the input and the ankle torque as the output, a critically damped, second-order system (twitch contraction time of 0.152 ± 0.027 s) successfully described the dynamics of the torque-generation process. According to the performed Bode analysis, the phase delay induced by this torque-generation process in the frequency region of spontaneous body sway during quiet standing was considerably large, corresponding to an effective time delay of about 200 to 380 ms. We compared the stability of the balance control system with and without the torque-generation process and demonstrated that a much smaller number of gain combinations can stabilize the model with the torque-generation process than without it. We concluded that the phase delay induced by the torque-generation process is a more destabilizing factor in the control mechanism of quiet standing than previously assumed, which restricts the control strategies that can stabilize the entire system.


2006 ◽  
Vol 321-323 ◽  
pp. 1119-1122 ◽  
Author(s):  
Hyeon Ki Choi ◽  
Won Hak Cho

This study addressed the effect of balance control problems on the high-heeled women. The specific purposes of this study are to quantify the displacements and velocities of center-of-pressure (COP) of a body during waist pulling perturbation and to compare the differences between the bare-feet and the high-heeled. Another purpose of the study is to identify the effects of a high-heeled posture on electromyography (EMG) activities and muscle fatigue. We used a waist pulling system which has three different magnitudes to sway the subjects. The COP displacement of a high-heeled posture was about twice as much as that of bare-feet posture. Also the COP velocity of a high-heeled posture became about twice as much as that of bare-feet posture. Muscle fatigue could be identified by the shift of the median frequency (MF) of the EMG power spectrum toward lower frequencies. Median frequency of the EMG power spectrum from tibialis anterior was reduced more rapidly during high-heeled situation than during bare-feet situation. COP kinematics and muscle fatigue analysis in postural balance researches are considered to provide useful information in understanding the balance control mechanism of women’s high-heeled posture.


Author(s):  
Edna S. Kaneshiro

It is currently believed that ciliary beating results from microtubule sliding which is restricted in regions to cause bending. Cilia beat can be modified to bring about changes in beat frequency, cessation of beat and reversal in beat direction. In ciliated protozoans these modifications which determine swimming behavior have been shown to be related to intracellular (intraciliary) Ca2+ concentrations. The Ca2+ levels are in turn governed by the surface ciliary membrane which exhibits increased Ca2+ conductance (permeability) in response to depolarization. Mutants with altered behaviors have been isolated. Pawn mutants fail to exhibit reversal of the effective stroke of ciliary beat and therefore cannot swim backward. They lack the increased inward Ca2+ current in response to depolarizing stimuli. Both normal and pawn Paramecium made leaky to Ca2+ by Triton extrac¬tion of the surface membrane exhibit backward swimming only in reactivating solutions containing greater than IO-6 M Ca2+ Thus in pawns the ciliary reversal mechanism itself is left operational and only the control mechanism at the membrane is affected. The topographic location of voltage-dependent Ca2+ channels has been identified as a component of the ciliary mem¬brane since the inward Ca2+ conductance response is eliminated by deciliation and the return of the response occurs during cilia regeneration. Since the ciliary membrane has been impli¬cated in the control of Ca2+ levels in the cilium and therefore is the site of at least one kind of control of microtubule sliding, we have focused our attention on understanding the structure and function of the membrane.


2019 ◽  
Vol 4 (6) ◽  
pp. 1418-1422
Author(s):  
Bre Myers ◽  
J. Andrew Dundas

Purpose The primary aim of the current article is to provide a brief review of the literature regarding the effects of noise exposure on the vestibular and balance control systems. Although the deleterious effects of noise on the auditory system are widely known and continue to be an active area of research, much less is known regarding the effects of noise on the peripheral vestibular system. Audiologists with working knowledge of how both systems interact and overlap are better prepared to provide comprehensive care to more patients as assessment of both the auditory and vestibular systems has been in the audiologists' scope of practice since 1992. Method A narrative review summarizes salient findings from the archival literature. Results Temporary and permanent effects on vestibular system function have been documented in multiple studies. Hearing conservation, vestibular impairment, and fall risk reduction may be more intimately related than previously considered. Conclusions A full appreciation of both the vestibular and auditory systems is necessary to address the growing and aging noise-exposed population. More cross-system studies are needed to further define the complex relationship between the auditory and vestibular systems to improve comprehensive patient care.


Sign in / Sign up

Export Citation Format

Share Document