A rotation scheme for dual-unit inertial navigation system based on MEMS sensors

Author(s):  
Lixiang Zhang ◽  
Lei Wang ◽  
Zengiun Liu ◽  
Jingxuan Ban
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1683 ◽  
Author(s):  
Zhengyao Jing ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Tao Zheng

In previous research, a semi-strapdown inertial navigation system (SSINS), based on micro-electro-mechanical system (MEMS) sensors, was able to realize over-range measurement of the attitude information of high-rotation missiles by constructing a single axis “spin reduction” platform. However, the MEMS sensors in SSINS were corrupted by significant sensor errors. In order to further improve SSINS measurement accuracy, a rotational modulation technique has been introduced to compensate for sensor errors. The ideal modulation angular velocity is changed sharply to achieve a constant speed, while in practical applications, the angular rate of the rotating mechanism’s output needs to go through an acceleration-deceleration process. Furthermore, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. In this paper, a novel rotation scheme is proposed which can effectively suppress the residual error in the navigation coordinate system caused by the modulation angular rate error, including the acceleration-deceleration process and instability of angular rate. The experiment results show that the position and attitude accuracy of the new rotation scheme was increased by more than 56%. In addition, the proposed scheme is applicable to navigation accuracy improvement under various dynamic conditions.


2013 ◽  
Vol 66 (5) ◽  
pp. 751-772 ◽  
Author(s):  
Xueyun Wang ◽  
Jie Wu ◽  
Tao Xu ◽  
Wei Wang

Inertial Navigation Systems (INS) were large, heavy and expensive until the development of cost-effective inertial sensors constructed with Micro-electro-mechanical systems (MEMS). However, the large errors and poor error repeatability of MEMS sensors make them inadequate for application in many situations even with frequent calibration. To solve this problem, a systematic error auto-compensation method, Rotation Modulation (RM) is introduced and detailed. RM does no damage to autonomy, which is one of the most important characteristics of an INS. In this paper, the RM effects on navigation performance are analysed and different forms of rotation schemes are discussed. A MEMS-based INS with the RM technique applied is developed and specific calibrations related to rotation are investigated. Experiments on the developed system are conducted and results verify that RM can significantly improve navigation performance of MEMS-based INS. The attitude accuracy is improved by a factor of 5, and velocity/position accuracy by a factor of 10.


2017 ◽  
Vol 17 (13) ◽  
pp. 4189-4196 ◽  
Author(s):  
Zengjun Liu ◽  
Lei Wang ◽  
Kui Li ◽  
Jie Sui

2011 ◽  
Vol 148-149 ◽  
pp. 192-197 ◽  
Author(s):  
Tao Xu ◽  
Bin Wang ◽  
Xue Yun Wang

Advanced development of an Inertial Navigation System (INS) using rotating modulated technique based on Micro-Electro-Mechanical Systems (MEMS) sensors is described. The system architecture and the mechanical structure are detailed. Alignment and navigation algorithms apposite to the RMSINS system are derived. Preliminary system static navigation experiment results are presented. Performance results show that rotating modulated technology, with appropriate navigation algorithm, makes it possible to use the MEMS sensors in SINS system, with the benefit of reducing system costs as well as improving accuracy.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4005 ◽  
Author(s):  
Bai ◽  
Lai ◽  
Lyu ◽  
Xu ◽  
Liu ◽  
...  

In a dual-axis rotational inertial navigation system (RINS), there are two kinds of installation errors, nonorthogonal installation errors of inertial sensors, and installation errors between the inertial measurement unit (IMU) and rotation axes. Traditionally, these two errors are not considered simultaneously. Thus, they are calibrated separately by different estimation algorithms and rotation schemes. In this paper, a system-level self-calibration method for installation errors of a dual-axis RINS is proposed. Based on the Kalman filter, the measurement model is reestablished to ensure that all installation errors can be estimated together. First, the relationship between the initial attitude and subsequent attitude of IMU during rotation is used as a constraint to estimate nonorthogonal installation errors of accelerometers, and installation errors between the IMU and rotation axes. Then, the angular rate of the rotation mechanism is used as a reference to estimate nonorthogonal installation errors of the gyros. The rotation scheme of the IMU is designed to make all installation errors observable, and the observability of the system is analyzed based on the piecewise constant system method. Simulation and laboratory experiment results suggest that installation errors can be effectively estimated by the proposed method, thereby avoiding the complex separating process.


Sign in / Sign up

Export Citation Format

Share Document