User Interest Prediction based on Social Network Profile with Machine Learning

Author(s):  
Shridhar Hegde ◽  
Santosh G ◽  
Shivakumar M ◽  
Srihari R ◽  
Shree Lakshmi N
2020 ◽  
Vol 34 (10) ◽  
pp. 13971-13972
Author(s):  
Yang Qi ◽  
Farseev Aleksandr ◽  
Filchenkov Andrey

Nowadays, social networks play a crucial role in human everyday life and no longer purely associated with spare time spending. In fact, instant communication with friends and colleagues has become an essential component of our daily interaction giving a raise of multiple new social network types emergence. By participating in such networks, individuals generate a multitude of data points that describe their activities from different perspectives and, for example, can be further used for applications such as personalized recommendation or user profiling. However, the impact of the different social media networks on machine learning model performance has not been studied comprehensively yet. Particularly, the literature on modeling multi-modal data from multiple social networks is relatively sparse, which had inspired us to take a deeper dive into the topic in this preliminary study. Specifically, in this work, we will study the performance of different machine learning models when being learned on multi-modal data from different social networks. Our initial experimental results reveal that social network choice impacts the performance and the proper selection of data source is crucial.


2021 ◽  
Author(s):  
Syeda Nadia Firdaus

Social network is a hot topic of interest for researchers in the field of computer science in recent years. These social networks such as Facebook, Twitter, Instagram play an important role in information diffusion. Social network data are created by its users. Users’ online activities and behavior have been studied in various past research efforts in order to get a better understanding on how information is diffused on social networks. In this study, we focus on Twitter and we explore the impact of user behavior on their retweet activity. To represent a user’s behavior for predicting their retweet decision, we introduce 10-dimentional emotion and 35-dimensional personality related features. We consider the difference of a user being an author and a retweeter in terms of their behaviors, and propose a machine learning based retweet prediction model considering this difference. We also propose two approaches for matrix factorization retweet prediction model which learns the latent relation between users and tweets to predict the user’s retweet decision. In the experiment, we have tested our proposed models. We find that models based on user behavior related features provide good improvement (3% - 6% in terms of F1- score) over baseline models. By only considering user’s behavior as a retweeter, the data processing time is reduced while the prediction accuracy is comparable to the case when both retweeting and posting behaviors are considered. In the proposed matrix factorization models, we include tweet features into the basic factorization model through newly defined regularization terms and improve the performance by 3% - 4% in terms of F1-score. Finally, we compare the performance of machine learning and matrix factorization models for retweet prediction and find that none of the models is superior to the other in all occasions. Therefore, different models should be used depending on how prediction results will be used. Machine learning model is preferable when a model’s performance quality is important such as for tweet re-ranking and tweet recommendation. Matrix factorization is a preferred option when model’s positive retweet prediction capability is more important such as for marketing campaign and finding potential retweeters.


2021 ◽  
Author(s):  
Syeda Nadia Firdaus

Social network is a hot topic of interest for researchers in the field of computer science in recent years. These social networks such as Facebook, Twitter, Instagram play an important role in information diffusion. Social network data are created by its users. Users’ online activities and behavior have been studied in various past research efforts in order to get a better understanding on how information is diffused on social networks. In this study, we focus on Twitter and we explore the impact of user behavior on their retweet activity. To represent a user’s behavior for predicting their retweet decision, we introduce 10-dimentional emotion and 35-dimensional personality related features. We consider the difference of a user being an author and a retweeter in terms of their behaviors, and propose a machine learning based retweet prediction model considering this difference. We also propose two approaches for matrix factorization retweet prediction model which learns the latent relation between users and tweets to predict the user’s retweet decision. In the experiment, we have tested our proposed models. We find that models based on user behavior related features provide good improvement (3% - 6% in terms of F1- score) over baseline models. By only considering user’s behavior as a retweeter, the data processing time is reduced while the prediction accuracy is comparable to the case when both retweeting and posting behaviors are considered. In the proposed matrix factorization models, we include tweet features into the basic factorization model through newly defined regularization terms and improve the performance by 3% - 4% in terms of F1-score. Finally, we compare the performance of machine learning and matrix factorization models for retweet prediction and find that none of the models is superior to the other in all occasions. Therefore, different models should be used depending on how prediction results will be used. Machine learning model is preferable when a model’s performance quality is important such as for tweet re-ranking and tweet recommendation. Matrix factorization is a preferred option when model’s positive retweet prediction capability is more important such as for marketing campaign and finding potential retweeters.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5515
Author(s):  
Francisco de Arriba-Pérez ◽  
Silvia García-Méndez ◽  
Francisco J. González-Castaño ◽  
Enrique Costa-Montenegro

We recently proposed a novel intelligent newscaster chatbot for digital inclusion. Its controlled dialogue stages (consisting of sequences of questions that are generated with hybrid Natural Language Generation techniques based on the content) support entertaining personalisation, where user interest is estimated by analysing the sentiment of his/her answers. A differential feature of our approach is its automatic and transparent monitoring of the abstraction skills of the target users. In this work we improve the chatbot by introducing enhanced monitoring metrics based on the distance of the user responses to an accurate characterisation of the news content. We then evaluate abstraction capabilities depending on user sentiment about the news and propose a Machine Learning model to detect users that experience discomfort with precision, recall, F1 and accuracy levels over 80%.


Machine Learning is empowering many aspects of day-to-day lives from filtering the content on social networks to suggestions of products that we may be looking for. This technology focuses on taking objects as image input to find new observations or show items based on user interest. The major discussion here is the Machine Learning techniques where we use supervised learning where the computer learns by the input data/training data and predict result based on experience. We also discuss the machine learning algorithms: Naïve Bayes Classifier, K-Nearest Neighbor, Random Forest, Decision Tress, Boosted Trees, Support Vector Machine, and use these classifiers on a dataset Malgenome and Drebin which are the Android Malware Dataset. Android is an operating system that is gaining popularity these days and with a rise in demand of these devices the rise in Android Malware. The traditional techniques methods which were used to detect malware was unable to detect unknown applications. We have run this dataset on different machine learning classifiers and have recorded the results. The experiment result provides a comparative analysis that is based on performance, accuracy, and cost.


Sign in / Sign up

Export Citation Format

Share Document