scholarly journals A single reset integrator based implementation of line current shaping controller for high power factor operation of flyback rectifier

Author(s):  
S. Chattopadhyay ◽  
V. Ramanarayanan
Author(s):  
Rahimi Baharom ◽  
Mohammad Nawawi Seroji

<span lang="EN-US">This paper presents the dynamic analysis of the high-power factor three-phase ac to dc converter using current injection hybrid resonant technique in order to investigate the characteristics of the output voltage, line current, DC-link voltage and the resonant current of the proposed converter. The dynamic analysis have been developed based on a separate analysis of the rectifier line-frequency operation and at the resonant circuit high-frequency. Converter circuit analysis have been performed based on the operation at the fundamental frequency. The power balance relation method has been included in order to match the line frequency equation with the high frequency resonant stage equation. This analysis can be envisaged to be the heart of the small-signal model to design the output voltage regulation and maintain a high-power factor input line current of the proposed converter.</span>


2010 ◽  
Vol 4 (2) ◽  
pp. 1-6
Author(s):  
S. Sankar ◽  
◽  
G. Gokula Krishnan ◽  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


Sign in / Sign up

Export Citation Format

Share Document