Comparison of low voltage topologies for voltage regulator modules

Author(s):  
H. Wetzel ◽  
N. Frohleke ◽  
F. Meier ◽  
P. Ide
2003 ◽  
Author(s):  
Hermann Wetzel ◽  
Norbert Frohleke ◽  
Horst Grotstollen

2012 ◽  
Vol 132 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Katsuhiro Matsuda ◽  
Kazuhiro Horikoshi ◽  
Toshiyuki Seto ◽  
Osamu Iyama ◽  
Hiromu Kobayashi

Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000096-000103
Author(s):  
Yoann Dusé ◽  
Fabien Laplace ◽  
Nicolas Joubert ◽  
Xavier Montmayeur ◽  
Noureddine Zitouni ◽  
...  

We present in this paper two new products for high-temperature, low-voltage (2.8V to 5.5V) power management applications. The first product is an original implementation of a monolithic low dropout regulator (XTR70010), able to deliver up to 1A at 230°C with less than 1V of dropout. This new voltage regulator can source an output current level up to 1.5A. The regulated output voltage can be selected among 32 preset values from 0.5V to 3.6V in steps of 100mV, or it can be obtained with a pair of external resistors. The circuit integrates complex analog and digital control blocks providing state of the art features such as UVLO protection, chip enable control, soft start-up and soft shut-down, hiccup short-circuit protection, customer selectable thermal shut-down, input power supply protection, output overshoot remover and stability over an extremely wide range of load capacitances. The circuit offers a fair ±2% absolute accuracy and is guaranteed latch-up free. The second product is an advanced high-temperature, low-power, digitally trimmable voltage reference (XTR75020). Thanks to a custom, 1-wire serial interface, the absolute precision and the temperature coefficient can be adjusted in order to obtain an accuracy better than 0.5% with a temperature coefficient bellow ±20ppm/°C. On-chip OTP memory for trimming of absolute value and temperature coefficient makes the circuit extremely accurate and almost insensitive to drifts over time and temperature. The circuit features a class AB output buffer able to source or sink up to 5mA and remains stable with any load capacitance up to 50μF. The XTR75020 has nine preset possible output voltages. The source and sink short circuit current always remains bellow 25mA. The quiescent current consumption is 300μA typical at 230°C while the standby current is, in all cases, under 20μA. Both devices are designed on a latch-up free silicon-on-insulator process.


Sign in / Sign up

Export Citation Format

Share Document