scholarly journals Implementation of Buck-Boost Converter as Low Voltage Stabilizer at 15 V

Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>

Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


DC-DC converters are playing an important role in designing of Electric Vehicles, integration of solar cells and other DC applications. Contemporary high power applications use multilevel converters that have multi stage outputs for integrating low voltage sources. Conventional DC-DC converters use single source and have complex structure while using for Hybrid Energy Systems. This paper proposes a multi-input, multi-output DC-DC converter to produce constant output voltage at different input voltage conditions. This topology is best suitable for hybrid power systems where the output voltage is variable due to environmental conditions. It reduces the requirement of magnetic components in the circuit and also reduces the switching losses. The proposed topology has two parts namely multi-input boost converter and level-balancing circuit. Boost converter increases the input voltage and Level Balancing Circuit produce Multi output. Equal values of capacitors are used in Level Balancing Circuit to ensure the constant output voltage at all output stages. The operating modes of each part are given and the design parameters of each part are calculated. Performance of the proposed topology is verified using MATLAB/Simulink simulation which shows the correctness of the analytical approach. Hardware is also presented to evaluate the simulation results.


2015 ◽  
Vol 643 ◽  
pp. 47-52
Author(s):  
Mu Rong Li ◽  
Yasunori Kobori ◽  
Feng Zhao ◽  
Qiu Lin Zhu ◽  
Zachary Nosker ◽  
...  

This paper proposes a single inductor dual output (SIDO) DC-DC converter with an exclusive control circuit. We propose two kinds of converter: a buck-buck and a boost-boost converter. Multiple voltage outputs are controlled exclusively, using error voltage feedback. This approach requires a few additional components (a switch, a diode and a comparator), but requires no current sensors and does not depend on the value of output voltage or output current. We describe circuit topologies, operation principles and simulation results.


Author(s):  
Aris Suryadi ◽  
Purwandito Tulus Asmoro ◽  
Agus Sofwan

Buck-boost Converter is the device with the function to convert DC Voltage input to the setpoint DC Voltage output. Buck-boost converter can be used for regulating unstable voltage became a stable voltage by the user’s needs. Using a Buck-boost Converter in the research is about how to apply a Buck-boost Converter of the AC to AC Converter device, AC to AC Converter is the device to convert AC voltage to AC Voltage where the voltage can be modified. In the research, the input Voltage of AC to AC Converter is unstable, so that the output Voltage is unstable too in the range of 190 V to 250 V. To solve this problem, that the Buck-boost can be installed to AC to AC Converter, it is useful to keep output Voltage stable even though the input Voltage is unstable. The AC to AC Converter device in this research consist of Rectifier, Buck-boost Converter, and Inverter. The experiment result of this research show that unstable AC input Voltage, 190 V to 250 V from the source after passing a Rectifier, became an unstable DC input Voltage, then be regulated by Buck-boost Converter became a stable DC Voltage, and then after passing the Inverter, a stable DC Voltage is converted became a stable AC Voltage, corresponding with the set point. For further development, AC to AC Converter combined with Buck-boost Converter can be applied to maintain a standard of Voltage 220 V AC from the sources to keep it stable.


Author(s):  
P. Maithili ◽  
C. Tharani ◽  
J. Nivedha ◽  
D. Soundarrajan

This paper presents about the designing of the controller for integrated Buck Buck-Boost converter for maintaining the constant DC output voltage. This constant output voltage can be used for low voltage application. The absence of transformer includes the advantages of losses is less, efficient power factor and high efficiency. It provides the simple control structure with the positive constant output voltage .It operates on the closed loop with the designing of the PI controller for a MOSFET switch to provide the gate pulse. Whatever may be the input voltage it will produce the constant output voltage. The converter is successfully done by using MAT Lab/Simulink and verified the error reducing to negligible values.


2021 ◽  
Vol 309 ◽  
pp. 01073
Author(s):  
Sreekanth Reddy Kondreddy ◽  
B. Veeranna Sreenivasappa

A two-stage converter connects the input grid voltage to a pack of batteries with the voltage varying between 48-400 V, depending on the size and the range of the vehicle, with battery-operated electric and Plug-in Hybrid Electric Vehicles (PHEVs). This article offers a unique built-in converter that can interface with both high voltage (HV) and low voltage (LV) batteries. For all car architectures a universal charger that can accommodate this wide range of battery pack voltages is suitable. The novel integrated buck and boost converter (IBBC) is the proposed converter supplied using AC-DC driver at the front end mode. The main objective of this paper is to show a universal battery charger for an EV with a high power factor (PFC) and a small total harmonic distortion (THD) in addition to the high power density. A PFC converter is formed without any auxiliary circuit to balance the output voltage dependence of the battery against fluctuations in the ac grid input voltage, which in turn reduces the cost of additional circuit. A closed loop controller scheme is used to adjust for variations in the broad range output voltage and load. The proposed topology’s detailed operation is simulated using the MATLAB/Simulink software and achieved a THD of 1.18%.


2018 ◽  
Vol 15 (2) ◽  
pp. 165-186
Author(s):  
Naik Venkatesh ◽  
Paulson Samuel

The voltage produced by the fuel cell (FC) device is unregulated and varies from 0.4 V to 0.8 V on full load to no-load respectively. When these devices are used in low voltage applications and output voltage lies between higher and lower values of input voltage range, it is required to connect a DCDC buck-boost converter to get a fixed output voltage. In this paper, a new noninverting multi device buck boost converter (MDBBC) is proposed, in which the multi device buck and boost converters are connected in cascade and operate individually either in buck or boost operating modes. The paper also includes the steady state analysis of MDDBC based on the state space averaging technique. A prototype model of proposed converter compatible with FCS-1000 Horizon FC model with rating of 270 W, 36 V is designed and developed. The proposed converter is experimentally validated with the results obtained from the prototype model, and results show the superiority of the converter with higher efficiency and lesser ripple current observed under steady state operation of the converter.


2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


Author(s):  
Shima Sadaf ◽  
Nasser Al-Emadi ◽  
Atif Iqbal ◽  
Mohammad Meraj ◽  
Mahajan Sagar Bhaskar

DC-DC power converters are necessary to step-up the voltage or current with high conversion ratio for many applications e.g. photovoltaic and fuel cell energy conversion, uninterruptible power supply, DC microgrid, automobile, high intensity discharged lamp ballast, hybrid vehicle, etc. in order to use low voltage sources. In this project, a modified SIBC (mSIBC) is proposed with reduced voltage stress across active switches. The proposed mSIBC configuration is transformerless and simply derived by replacing one diode of the classical switched inductor structure with an active switch. As a result, mSIBC required low voltage rating active switches, as the total output voltage is shared between two active switches. Moreover, the proposed mSIBC is low in cost, provides higher efficiency and required the same number of components compared to the classical SIBC. The experimental results are presented which validated the theoretical analysis and functionality, and the efficiency of the designed converter is 97.17%. The proposed mSIBC converter provides higher voltage conversion ratio compared to classical converters e.g. boost, buck-boost, cuk, and SEPIC. The newly designed configurations will aid the intermediate power stage between the renewable sources and utility grid or high voltage DC or AC load. Since, the total output voltage is distributed among the two active switches, low voltage rating switches can be employed to design the power circuit of the proposed converter. The classical boost converter or recently proposed switched inductor based boost converter can be replaced by the proposed mSIBC converter in real-time applications such as DC microgrid, DC-DC charger, battery backup system, UPS, EV, an electric utility grid. The proposed power circuitry is cost effective, compact in size, easily diagnostic, highly efficient and reliable.


Sign in / Sign up

Export Citation Format

Share Document