Application of Time-Modulation to Design Low Sidelobe Phase-Differentiated Dual-Beam Linear Antenna Arrays with Low DRR

Author(s):  
Sujit Kumar Mandal ◽  
Gautam Kumar Mahanti ◽  
Rowdra Ghatak
Author(s):  
Toan The Tang ◽  
Tran Minh Nguyen ◽  
Giang Truong Vu Bang

This paper proposes a feeding networking to gain low sidelobe levels for microstrip linear antenna arrays. The procedure to design a feeding network using Chebyshev weighting method will be proposed and presented. As a demonstration, a feeding network for 8×1 elements linear array with Chebyshev distribution weights (preset sidelobe level of -25 dB) has been designed. An unequal T-junction power divider has been applied in designing the feeding network to guarantee the output powers the same as Chebyshev weights. The obtained results of the amplitudes at each output port have been validated with theory data. The phases of output signals are almost equal at all ports. The proposed feeding network, therefore, can be a good candidate for constructing a low sidelobe level linear array antenna.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Longjun Li ◽  
Buhong Wang

A new Modified Iterative Fourier Technique (MIFT) is proposed for the design of interleaved linear antenna arrays which operate at different frequencies with no grating lobes, low-sidelobe levels, and wide bandwidths. In view of the Fourier transform mapping between the element excitations and array factor of uniform linear antenna array, the spectrum of the array factor is first acquired with FFT and its energy distributions are investigated thoroughly. The relationship between the carrier frequency and the element excitation is obtained by the density-weighting theory. In the following steps, the element excitations of interleaved subarrays are carefully selected in an alternate manner, which ensures that similar patterns can be achieved for interleaved subarrays. The Peak Sidelobe Levels (PSLs) of the interleaved subarrays are further reduced by the iterative Fourier transform algorithm. Numerical simulation results show that favorable design of the interleaved linear antenna arrays with different carrier frequencies can be obtained by the proposed method with favorable pattern similarity, low PSL, and wide bandwidths.


2014 ◽  
Vol 34 ◽  
pp. 135-142 ◽  
Author(s):  
Sujit Kumar Mandal ◽  
Gautam Kumar Mahanti ◽  
Rowdra Ghatak

2014 ◽  
Vol 13 (7) ◽  
pp. 3791-3805 ◽  
Author(s):  
Peng Wang ◽  
Yonghui Li ◽  
Xiaojun Yuan ◽  
Lingyang Song ◽  
Branka Vucetic

Author(s):  
Anas A. Amaireh ◽  
Asem S. Al-Zoubi ◽  
Nihad I. Dib

In this paper, symmetric scanned linear antenna arrays are synthesized, in order to minimize the side lobe level of the radiation pattern. The feeding current amplitudes are considered as the optimization parameters. Newly proposed optimization algorithms are presented to achieve our target; Antlion Optimization (ALO) and a new hybrid algorithm. Three different examples are illustrated in this paper; 20, 26 and 30 elements scanned linear antenna array. The obtained results prove the effectiveness and the ability of the proposed algorithms to outperform and compete other algorithms like Symbiotic Organisms Search (SOS) and Firefly Algorithm (FA).


Sign in / Sign up

Export Citation Format

Share Document