Open-loop Model-free Dynamic Control of a Soft Manipulator for Tracking Tasks

Author(s):  
Andrea Centurelli ◽  
Alessandro Rizzo ◽  
Silvia Tolu ◽  
Egidio Falotico
2015 ◽  
Vol 35 (8) ◽  
pp. 1000-1019 ◽  
Author(s):  
Andrew D. Marchese ◽  
Russ Tedrake ◽  
Daniela Rus

The goal of this work is to develop a soft-robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all of the unknown components of the system; these are the soft manipulator, its distributed fluidic elastomer actuators, as well as the drive cylinders that supply fluid energy. Next, using this model and trajectory-optimization techniques we find locally-optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. Last, we introduce the idea of static bracing for a soft elastomer arm and discuss how forming environmental braces might be an effective manipulation strategy for this class of robots. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.


2019 ◽  
Vol 36 (2) ◽  
pp. 185-194 ◽  
Author(s):  
I. Yazar ◽  
F. Caliskan ◽  
R. Vepa

Abstract In this paper the application of model predictive control (MPC) to a two-mode model of the dynamics of the combustion process is considered. It is shown that the MPC by itself does not stabilize the combustor and the control gains obtained by applying the MPC algorithms need to be optimized further to ensure that the phase difference between the two modes is also stable. The results of applying the algorithm are compared with the open loop model amplitude responses and to the closed loop responses obtained by the application of a direct adaptive control algorithm. It is shown that the MPC coupled with the cost parameter optimisation proposed in the paper, always guarantees the closed loop stability, a feature that may not always be possible with an adaptive implementations.


SIMULATION ◽  
2019 ◽  
Vol 95 (11) ◽  
pp. 1069-1084 ◽  
Author(s):  
Rui Yan ◽  
Bo Yan

Energy saving and environmental protection are important issues of today. Concerning the environmental and social need to increase the utilization of used products, this paper introduces two remanufacturing reverse logistics (RL) network models, namely, the open-loop model and the closed-loop model. In an open-loop RL system, used products are recovered by outside firms, while in a closed-loop RL system, they are returned to their original producers. The open-loop model features a location selection with two layers. For this model, a mixed-integer linear program (MILP) is built to minimize the total costs of the open-loop RL system, including the fixed cost, the freight between nodes, the operation cost of storage and remanufacturing centers, the penalty cost of unmet or remaining demand quantity, and the government-provided subsidy given to the enterprises that protect the environment. This MILP is solved using an adaptive genetic algorithm with MATLAB simulation. For a closed-loop RL network model, a special demand function considering the relationship between new and remanufactured products is developed. Remanufacturing rate, environmental awareness, service demand elasticity, value-added services, and their impacts on total profit of the closed-loop supply chain are analyzed. The closed-loop RL network model is proved effective through the analysis of a numerical example.


1976 ◽  
Vol 43 (3_suppl) ◽  
pp. 1339-1345 ◽  
Author(s):  
Henry S. R. Kao

Target intermittence in tracking has been studied as frequency of target presentation at various time intervals. Task efficiency increased as a function of increased frequency of target display in open-loop tracking tasks, where the steady state of presentation resulted in the best performance. The present study examined effects of feedback intermittency in compensatory tracking as a major source of disruption of the motor-sensory feedback process in the closed-loop tracking system. Feedback intermittency is defined as the feedback of momentary sampling of the difference between target movements and the operator's control motion for specified time lengths before being displayed to him in a continuous tracking task. With a random wave pattern of 9.76 cpm, 7 magnitudes of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.5 sec. were used to represent various levels of feedback intermittency. Task efficiency decreased as a function of increased magnitudes of intermittency. Results are discussed relative to the difference between target intermittence and feedback intermittency and their effects on different tracking tasks. The findings also establish the concept of feedback intermittency as a disturbing factor in compensatory tracking in degrading the operator's performance.


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


2020 ◽  
Author(s):  
Domenico De Santis ◽  
Christian Massari ◽  
Stefania Camici ◽  
Sara Modanesi ◽  
Luca Brocca ◽  
...  

<p>The increasing availability of remotely sensed soil moisture (SM) observations has brought great interest in their use in data assimilation (DA) frameworks in order to improve streamflow simulations. However, the added-value of assimilating satellite SM into rainfall-runoff models is still difficult to be quantified, and much more research is needed to fully understand benefits and limitations.</p><p>Here, an extensive evaluation of remotely sensed SM assimilation on hydrological model performances was carried out, involving 775 catchments across Europe. Satellite observations for over a decade from the three ESA CCI SM products (ACTIVE, PASSIVE and COMBINED) were assimilated in a lumped rainfall-runoff model which includes a thin surface layer in its soil schematization, by using the Ensemble Kalman Filter (EnKF). Observations were mapped into the space of modelled surface layer SM through a monthly CDF-matching prior to DA, while the observation error variance was calibrated in every catchment in order to maximize the assimilation efficiency.</p><p>The implemented DA procedure, aimed at reducing only random errors in SM variables, generally resulted in limited runoff improvements, although with some variability within the study domain. Factors emerging as relevant for the assessment of assimilation impact were: i) the open-loop (OL) model performance; ii) the remotely sensed SM accuracy for hydrological purposes; iii) the sensitivity of the catchment response to soil moisture dynamics; and also iv) issues in DA implementation (e.g., violations in theoretical assumptions).</p><p>The open-loop model results contributed significantly to explain differences in assimilation performances observed within the study area as well as at the seasonal scale; overall, the high OL efficiency is the main cause of the slight improvements here observed after DA. The integration of satellite SM information, showing greater skills in correspondence of poorer streamflow simulations, confirmed a potential in reducing the effects of rainfall inaccuracies.</p><p>The variability in satellite SM accuracy for hydrological purposes was also found to be relevant in DA assessment. The ACTIVE product assimilation generally provided the best streamflow results within the study catchments, followed by COMBINED and PASSIVE ones, while factors affecting the SM retrieval such as vegetation density and topographic complexity were not found to have a decisive effect on DA results.</p><p>Low assimilation performances were obtained when runoff was dominated by snow dynamics (e.g., in the northern areas of the study domain, or in winter season at medium latitudes), due to the SM conditions having a negligible effect on the hydrological response.</p><p>Finally, in basins where SM was persistently near the saturation value, deteriorations in hydrological simulations were observed, mainly attributable to violation of error normality hypothesis in EnKF due to the bounded nature of soil moisture.</p><p>In conclusion, the added-value of assimilating remotely sensed SM into rainfall-runoff models was confirmed to be linked to multiple factors: understanding their contribution and interactions deserves further research and is fundamental to take full advantage of the potential of satellite SM retrievals, in parallel with their progress in terms of accuracy and resolutions.</p>


2014 ◽  
Author(s):  
Meena D ◽  
Fredy Francis ◽  
Sarath K T ◽  
Dipin E ◽  
T. Srinivas ◽  
...  
Keyword(s):  

2004 ◽  
Vol 29 (7-8) ◽  
pp. 703-707 ◽  
Author(s):  
Christopher J. Gordon ◽  
Cassandra D. Haley ◽  
Peter L. McLennan ◽  
Michael J. Tipton ◽  
Igor B. Mekjavić ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document