A fully automated 2-DE gel image analysis pipeline for high throughput proteomics

Author(s):  
Panagiotis Tsakanikas ◽  
Elias S. Manolakos
2018 ◽  
Author(s):  
Sarah D. Turner ◽  
Shelby L. Ellison ◽  
Douglas A. Senalik ◽  
Philipp W. Simon ◽  
Edgar P. Spalding ◽  
...  

AbstractCarrot is a globally important crop, yet efficient and accurate methods for quantifying its most important agronomic traits are lacking. To address this problem, we developed an automated analysis platform that extracts components of size and shape for carrot shoots and roots, which are necessary to advance carrot breeding and genetics. This method reliably measured variation in shoot size and shape, leaf number, petiole length, and petiole width as evidenced by high correlations with hundreds of manual measurements. Similarly, root length and biomass were accurately measured from the images. This platform quantified shoot and root shapes in terms of principal components, which do not have traditional, manually-measurable equivalents. We applied the pipeline in a study of a six-parent diallel population and an F2 mapping population consisting of 316 individuals. We found high levels of repeatability within a growing environment, with low to moderate repeatability across environments. We also observed co-localization of quantitative trait loci for shoot and root characteristics on chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage and/or pleiotropy. By increasing the number of individuals and phenotypes that can be reliably quantified, the development of a high-throughput image analysis pipeline to measure carrot shoot and root morphology will expand the scope and scale of breeding and genetic studies.


Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Morteza Shabannejad ◽  
Mohammad-Reza Bihamta ◽  
Eslam Majidi-Hervan ◽  
Hadi Alipour ◽  
Asa Ebrahimi

Abstract Background High-throughput phenotyping and genomic selection accelerate genetic gain in breeding programs by advances in phenotyping and genotyping methods. This study developed a simple, cost-effective high-throughput image analysis pipeline to quantify digital images taken in a panel of 286 Iran bread wheat accessions under terminal drought stress and well-watered conditions. The color proportion of green to yellow (tolerance ratio) and the color proportion of yellow to green (stress ratio) was assessed for each canopy using the pipeline. The estimated tolerance and stress ratios were used as covariates in the genomic prediction models to evaluate the effect of change in canopy color on the improvement of the genomic prediction accuracy of different agronomic traits in wheat. Results The reliability of the high-throughput image analysis pipeline was proved by three to four times of improvement in the accuracy of genomic predictions for days to maturity with the use of tolerance and stress ratios as covariates in the univariate genomic selection models. The higher prediction accuracies were attained for days to maturity when both tolerance and stress ratios were used as fixed effects in the univariate models. The results of this study indicated that the Bayesian ridge regression and ridge regression-best linear unbiased prediction methods were superior to other genomic prediction methods which were used in this study under terminal drought stress and well-watered conditions, respectively. Conclusions This study provided a robust, quick, and cost-effective machine learning-enabled image-phenotyping pipeline to improve the genomic prediction accuracy for days to maturity in wheat. The results encouraged the integration of phenomics and genomics in breeding programs.


2011 ◽  
Vol 12 (1) ◽  
pp. 148 ◽  
Author(s):  
Anja Hartmann ◽  
Tobias Czauderna ◽  
Roberto Hoffmann ◽  
Nils Stein ◽  
Falk Schreiber

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuo Zhou ◽  
Xiujuan Chai ◽  
Zixuan Yang ◽  
Hongwu Wang ◽  
Chenxue Yang ◽  
...  

Abstract Background Maize (Zea mays L.) is one of the most important food sources in the world and has been one of the main targets of plant genetics and phenotypic research for centuries. Observation and analysis of various morphological phenotypic traits during maize growth are essential for genetic and breeding study. The generally huge number of samples produce an enormous amount of high-resolution image data. While high throughput plant phenotyping platforms are increasingly used in maize breeding trials, there is a reasonable need for software tools that can automatically identify visual phenotypic features of maize plants and implement batch processing on image datasets. Results On the boundary between computer vision and plant science, we utilize advanced deep learning methods based on convolutional neural networks to empower the workflow of maize phenotyping analysis. This paper presents Maize-IAS (Maize Image Analysis Software), an integrated application supporting one-click analysis of maize phenotype, embedding multiple functions: (I) Projection, (II) Color Analysis, (III) Internode length, (IV) Height, (V) Stem Diameter and (VI) Leaves Counting. Taking the RGB image of maize as input, the software provides a user-friendly graphical interaction interface and rapid calculation of multiple important phenotypic characteristics, including leaf sheath points detection and leaves segmentation. In function Leaves Counting, the mean and standard deviation of difference between prediction and ground truth are 1.60 and 1.625. Conclusion The Maize-IAS is easy-to-use and demands neither professional knowledge of computer vision nor deep learning. All functions for batch processing are incorporated, enabling automated and labor-reduced tasks of recording, measurement and quantitative analysis of maize growth traits on a large dataset. We prove the efficiency and potential capability of our techniques and software to image-based plant research, which also demonstrates the feasibility and capability of AI technology implemented in agriculture and plant science.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 840
Author(s):  
Willem Q. M. van de Koot ◽  
Larissa J. J. van Vliet ◽  
Weilun Chen ◽  
John H. Doonan ◽  
Candida Nibau

Sphagnum peatmosses play an important part in water table management of many peatland ecosystems. Keeping the ecosystem saturated, they slow the breakdown of organic matter and release of greenhouse gases, facilitating peatland’s function as a carbon sink rather than a carbon source. Although peatland monitoring and restoration programs have increased recently, there are few tools to quantify traits that Sphagnum species display in their ecosystems. Colony density is often described as an important determinant in the establishment and performance in Sphagnum but detailed evidence for this is limited. In this study, we describe an image analysis pipeline that accurately annotates Sphagnum capitula and estimates plant density using open access computer vision packages. The pipeline was validated using images of different Sphagnum species growing in different habitats, taken on different days and with different smartphones. The developed pipeline achieves high accuracy scores, and we demonstrate its utility by estimating colony densities in the field and detecting intra and inter-specific colony densities and their relationship with habitat. This tool will enable ecologists and conservationists to rapidly acquire accurate estimates of Sphagnum density in the field without the need of specialised equipment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Garrett M. Fogo ◽  
Anthony R. Anzell ◽  
Kathleen J. Maheras ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractThe mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


2021 ◽  
Vol 120 (3) ◽  
pp. 269a-270a
Author(s):  
Shreyas U. Hirway ◽  
Nadiah T. Hassan ◽  
Michael Sofroniou ◽  
Christopher A. Lemmon ◽  
Seth H. Weinberg

Author(s):  
Nathanael Miller ◽  
Dane Wolf ◽  
Nour Alsabeeh ◽  
Kiana Mahdaviani ◽  
Mayuko Segawa ◽  
...  

Lab on a Chip ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 3652-3663 ◽  
Author(s):  
Patricia M. Davidson ◽  
Gregory R. Fedorchak ◽  
Solenne Mondésert-Deveraux ◽  
Emily S. Bell ◽  
Philipp Isermann ◽  
...  

We report the development, validation, and application of an easy-to-use microfluidic micropipette aspiration device and automated image analysis platform that enables high-throughput measurements of the viscoelastic properties of cell nuclei.


Sign in / Sign up

Export Citation Format

Share Document