Experimental investigation of rainfall effect on digital satellite television reception in Nigeria: Initial results

Author(s):  
O. O. Obiyemi ◽  
T. S. Ibiyemi
1964 ◽  
Vol 86 (3) ◽  
pp. 457-460 ◽  
Author(s):  
D. A. Di Cicco ◽  
R. J. Schoenhals

The purpose of this exploratory experimental investigation was to determine the effect on the heat-transfer rate when a pulsating pressure is applied to a stable film boiling system. The test section used consisted of a 0.030-in-dia horizontal platinum wire. The boiling medium was monofluorotrichloromethane, C Cl3F, commercially available in high purity as Refrigerant 11. A boiling curve was obtained at atmospheric pressure. In addition, pulsating tests were conducted for various pulsing rates and for three different test wire temperatures. Periodic pressure pulses of approximately 100 psi were applied to the system. The initial results thus far obtained in this investigation show a substantial increase in the heat-transfer rate for pulsing frequencies ranging from 11.3 cps to 25.8 cps. The improvement is noted to be from 59.5 percent to 103 percent above the heat-transfer rate for film boiling at atmospheric pressure at the same temperature difference between the test wire and the fluid. It was also found that the heat-transfer rate achieved was higher than the average of the heat-transfer rate for atmospheric pressure film boiling and that for subcooled film boiling at the peak pressure achieved in pulsing. For the higher pulsing frequencies, the heat-transfer rate was found to be even greater than that for subcooled film boiling at the peak pressure.


Author(s):  
Peter James ◽  
Paul Hutchinson ◽  
Colin Madew

Engineering components, particularly those containing weldments, may contain small crack-like defects that experience combinations of primary and secondary stresses during service. A new function, g(), has been introduced previously to quantify the influence of plasticity interaction under combined primary and secondary loading on a components crack driving force. This paper compares g() with experiments performed to consider g() over a range of plasticity values. This experimental programme was performed on scalloped notch three point bend specimens that had experienced a pre-compression to induce a residual stress field before being tested to failure over a range of temperatures (−150, −90 and −50 °C). Samples which did not undergo a pre-compression were also tested to provide an estimate of the materials fracture toughness at the temperature in question. Through analysing the experimental results it is clear that further material characterisation is required. This paper, therefore, only presents the initial results at this stage. However, as a pessimistic interpretation of the results has been made, and since both the existing R6 and the g() plasticity interaction parameters are acceptable, the experiments provide useful validation to both methods.


Author(s):  
Avril V. Somlyo ◽  
H. Shuman ◽  
A.P. Somlyo

This is a preliminary report of electron probe analysis of rabbit portal-anterior mesenteric vein (PAMV) smooth muscle cryosectioned without fixation or cryoprotection. The instrumentation and method of electron probe quantitation used (1) and our initial results with cardiac (2) and skeletal (3) muscle have been presented elsewhere.In preparations depolarized with high K (K2SO4) solution, significant calcium peaks were detected over the sarcoplasmic reticulum (Fig 1 and 2) and the continuous perinuclear space. In some of the fibers there were also significant (up to 200 mM/kg dry wt) calcium peaks over the mitochondria. However, in smooth muscle that was not depolarized, high mitochondrial Ca was found in fibers that also contained elevated Na and low K (Fig 3). Therefore, the possibility that these Ca-loaded mitochondria are indicative of cell damage remains to be ruled out.


2001 ◽  
Vol 120 (5) ◽  
pp. A226-A226 ◽  
Author(s):  
W LAMMERS ◽  
S DHANASEKARAN ◽  
J SLACK ◽  
B STEPHEN

2007 ◽  
Vol 177 (4S) ◽  
pp. 364-364 ◽  
Author(s):  
Surena F. Matin ◽  
Christopher G. Wood ◽  
Shi-Ming Tu ◽  
Nizar M. Tannir ◽  
Eric Jonasch

Sign in / Sign up

Export Citation Format

Share Document