Influence of amplitude distribution within a module and over a system of modules on the pattern of multimodule antenna array

Author(s):  
A. P. Joubko ◽  
N. M. Naumovich ◽  
O. A. Yurtsev
Doklady BGUIR ◽  
2020 ◽  
pp. 5-13
Author(s):  
O. A. Yurtsev ◽  
R. Ch. Shimanouski

The article explores the holographic method of measuring the antenna pattern. A flat antenna array is used as the antenna under test, and a planar rectangular surface is used as the surface on which the amplitudephase distribution in the near field is measured. Using the example of a flat antenna array, we consider the influence of the size of the measurement surface of the amplitude-phase distribution of the field in a plane orthogonal to the reconstruction plane of the radiation pattern. Antenna emitters are excited with a combined amplitude distribution and linear phase distribution. The field in the longitudinal zone of the lattice is determined using the Kirchhoff integral. The reconstructed radiation patterns are estimated using the amplitude-phase distribution over the entire measurement plane in comparison with the array radiation pattern in the far zone. A numerical analysis of the influence on the errors in determining the parameters of the lattice radiation pattern using the holographic method is also carried out: the number of columns of the amplitude-phase distribution on the measurement plane, the position of this plane in three coordinates relative to the plane of the aperture of the lattice. It is shown that if the spacing of the points of measurement of the amplitude-phase distribution and the pitch of the lattice are equal, to restore the radiation pattern using the holographic method, it is sufficient to use one column of the amplitude-phase distribution on the measurement plane. This greatly simplifies and reduces the cost of the measurement process and the necessary equipment. Examples of determining errors in measuring the parameters of the antenna array when shifting the plane of measurement of the amplitude-phase distribution in three coordinates are given.


Author(s):  
Le Minh Thuy

In this paper, a novel antenna array at 5GHz is presented with a low sidelobe level and wide impedance bandwidth for indoor positioning applications . The antenna array has the size of 450 ×57×0.8 mm3 with the high gain of 14.5dBi and the low SLL of -18 dB at 5GHz. The series feed using Unequal Split T-Junction is proposed with the Chebyshev-amplitude distribution to improve SLL. Besides the 1800 phase and amplitude distribution, by deploying driven elements above each single antenna element, the radiation pattern and the gain of the antenna aray are significantly improved.


Author(s):  
A. N. Gribanov ◽  
S. E. Gavrilova ◽  
O. V. Pavlovich ◽  
G. F. Moseychuk ◽  
A. N. Titov

The paper focuses on the phase synthesis of one-dimensionally expanded phased array beams. In the study we used the fan partial diagram method. By this method and applying the known amplitude distribution in the aperture and the desired beam shape, we were able to unambiguously determine the desired phase distribution by means of simple calculations. The method is applicable for a phased antenna array and an active phased antenna array with linear and flat apertures. The study is the first to discuss the scaling properties of expanded beams, which allow one to obtain many synthesis options from only one option by multiplying the phase distribution by the scaling factor. Four important properties of scaling are formulated and proved, which must be taken into account when scaling. The paper gives the results of mathematical simulation and experimental measurements, proving the efficiency of the method


2017 ◽  
Vol 30 (3) ◽  
pp. 391-402
Author(s):  
Marija Milijic ◽  
Aleksandar Nesic ◽  
Bratislav Milovanovic

The paper discusses the problem of side lobe suppression in the radiation pattern of printed antenna arrays with different 3D reflector surfaces. The antenna array of eight symmetrical pentagonal dipoles with corner reflectors of various angles is examined. All investigated antenna arrays are fed by the same feeding network of impedance transformers enabling necessary amplitude distribution. Considering the different reflector surfaces, the influence of parasitic radiation from feeding network on side lobe suppression is studied to prevent the reception of unwanted noise and to increase a gain.


Author(s):  
Tang The Toan ◽  
Nguyen Minh Tran ◽  
Truong Vu Bang Giang

This paper proposes a 8 x 1 sprout-shaped antenna array with low sidelobe level (SLL) for outdoor point to point applications. The array has the dimensions of 165 mm x 195 mm x 1.575 mm and is designed on Rogers RT/Duroid 5870tm with the thickness of 1.575 mm and permittivity of 2.33. In order to achieve low SLL, Chebyshev distribution weights corresponding to SLL preset at -30 dB has been applied to design the feed of the array. Unequal T-junction dividers has been used to ensure that the output powers are proportional to the Chebyshev amplitude distribution. A reflector has been added to the back of the antenna to improve the directivity. The simulated results show that the proposed array can work at 4.95 GHz with the bandwidth of 185 MHz. Moreover, it can provide the gain up to 12.9 dBi and SLL suppressed to -25 dB. A prototype has also been fabricated and measured. A good agreement between simulation and measurement has been obtained. It is proved that the array can be a good candidate for point to point communications.


Sign in / Sign up

Export Citation Format

Share Document