A Method for Calculation of Cosmic Radiation Effective Dose Rate at Civil Aviation Altitude

Author(s):  
Ying-Jin Feng ◽  
Wei-Ru Chen
2021 ◽  
Author(s):  
Andrea Serafini ◽  
Matteo Albéri ◽  
Stefano Bisogno ◽  
Enrico Chiarelli ◽  
Luca Cicala ◽  
...  

<p>The absorbed dose rate due to natural radioactivity arises from terrestrial and cosmic sources, both contributing to the individual effective dose rate per fraction of time spent outdoor. Rocks and soils are the main reservoirs of terrestrial gamma-emitting radionuclides (e.g. <sup>40</sup>K and radioisotopes of the <sup>232</sup>Th and <sup>238</sup>U chains) while high-energy particles originated from astrophysical phenomena produce a cascade of nuclear interactions which contributes to cosmic radiation decreasing in intensity with the atmosphere depth. Following the UNSCEAR 2008 report, the average exposure of the world population to the different natural radioactivity sources corresponds to about 2420 μSv/yr and the external effective dose of terrestrial and cosmic origin is 870 μSv/yr.</p><p>The Umbria region (Italy), with its high variability of sedimentary and igneous rocks (e.g. limestone, sandstone, volcanic tuff) and a population of about 880000 inhabitants well distributed between 100 m and 1000 m a.s.l., represents the ideal case for mapping the effective dose from natural sources in a multifaceted environment. The outdoor effective dose rate from terrestrial radionuclides is studied by analysing 7439 gamma spectra measuring rock and soil samples in laboratory and carrying out about 20 hours of airborne radiometric surveys. Collocated CoKriging is used for the spatial interpolation of the sparse data, adopting a high-resolution geological map as ancillary information. The obtained numerical map is integrated with the cosmic radiation effective dose rate calculated considering the effects of altitude, latitude and the solar magnetic activity cycle. The resulting map of the outdoor effective dose rate shows a median value of 632 mSv/yr and only 3% of the territory is characterized by values higher than 814 mSv/yr.</p>


2021 ◽  
Vol 19 (12) ◽  
pp. 06-10
Author(s):  
Hussam Najem Abood ◽  
Ahmed Abbas Mohamed

Indoor radon/thoron concentration has been determined in some dwellings of Suq Alshouk district in Thiqar Governorate southern of Iraq, using LR-115 type II and CR-39 (SSNTDs). In this work the indoor radon/thoron concentration varies from (8-73) Bq m-3 for radon with an average 35±2Bq m-3, and ranges (1- 47) Bq m-3 for thoron with an average16±2Bq m-3. The average annual effective dose due to radon and thoron varies from 0.43-3.38m Sv y-1 with average value 1.43±0.11 mSv y-1.


2019 ◽  
Vol 107 (6) ◽  
pp. 489-502
Author(s):  
Abd-Elmoniem A. Elzain ◽  
Hajo Idriss ◽  
Yousif Sh. Mohammed ◽  
Khidir Shaib Mohamed ◽  
Mohamed Abd Elwahab Mohamed Ali ◽  
...  

Abstract In this research, the results of radon concentration, surface and mass exhalation rates, radium concentration, effective dose rate and the alpha index have been investigated in a number of 198 soil samples that have been collected from various residential locations of Halfa Aljadida area, Sudan. The can technique, containing CR-39 have been used. From our results, the average value of soil gas radon concentration was found to be 1.96±0.22 kBq·m−3. The average values of surface and mass exhalation rates were 1.73±0.19 Bq·m−2·h−1 and 34.79±3.87 mBq·kg−1·h−1, respectively. The radium concentration average value was 8.06±0.90 Bq·kg−1. While the average value of the effective dose rate was recorded to be 54.69±6.11 mSv·y−1. The average value of alpha index of studied samples was (4.03±0.45)×10−2. From the study, a good positive and linear correlation between radium concentration, surface and mass exhalation rates of soil samples were present. In addition to that, a positive and linear correlation between radium and radon concentrations was found. Finally, a comparison between the results and other findings was conducted and the results imply the fact that the area under consideration is safe as if the health hazard are mentioned.


2018 ◽  
Vol 62 (2) ◽  
pp. 398-407 ◽  
Author(s):  
S. Tuohino ◽  
A. Ibragimov ◽  
I. Usoskin ◽  
A. Mishev

Author(s):  
Emilija Fidanchevski ◽  
Biljana Angjusheva ◽  
Vojo Jovanov ◽  
Pece Murtanovski ◽  
Ljubica Vladiceska ◽  
...  

AbstractHuge quantities of fly ash and bottom ash are generated from thermal power plants and it presents great concern for country, mainly due to the environmental effects. In this study, fly ashes and bottom ash were characterized from technical and radiological aspects. Health effect due to the activity of radionuclides 226Ra, 232Th and 40K was estimated via radium equivalent activity (Raeq), external hazards index (Hex), the external absorbed dose rate (D) and annual effective dose rate (EDR). The specific surface area (40.25 m2 g−1), particle density (1.88 g cm−3) and LOI (23.49%) were typical for bottom ash. Siliceous fly ash contained 32% reactive silica. The annual effective dose rate for all ashes is ≤ 0.2 mSv y−1. Both, fly ash and bottom ash present potential secondary raw materials to be used for building purposes as result of their technological and radiological assessment.


2018 ◽  
Vol 8 ◽  
pp. A46 ◽  
Author(s):  
Alexander Mishev ◽  
Sasu Tuohino ◽  
Ilya Usoskin

Radiation exposure due to cosmic rays, specifically at cruising aviation altitudes, is an important topic in the field of space weather. While the effect of galactic cosmic rays can be easily assessed on the basis of recent models, estimate of the dose rate during strong solar particle events is rather complicated and time consuming. Here we compute the maximum effective dose rates at a typical commercial flight altitude of 35 kft (≈11 000 m above sea level) during ground level enhancement events, where the necessary information, namely derived energy/rigidity spectra of solar energetic particles, is available. The computations are carried out using different reconstructions of the solar proton spectra, available in bibliographic sources, leading to multiple results for some events. The computations were performed employing a recent model for effective dose and/or ambient dose equivalent due to cosmic ray particles. A conservative approach for the computation was assumed. A highly significant correlation between the maximum effective dose rate and peak NM count rate increase during ground level enhancement events is derived. Hence, we propose to use the peak NM count rate increase as a proxy in order to assess the peak effective dose rate at flight altitude during strong solar particle events using the real time records of the worldwide global neutron monitor network.


2001 ◽  
Vol 96 (1) ◽  
pp. 219-222 ◽  
Author(s):  
A. Ferrari ◽  
M. Pelliccioni ◽  
T. Rancati

Sign in / Sign up

Export Citation Format

Share Document