Machine Learning Approach to Study the Impact of Obesity on Autonomic Nervous System using Heart Rate Variability Features

Author(s):  
SR Rathod ◽  
UM Chaskar ◽  
CY Patil
Biofeedback ◽  
2015 ◽  
Vol 43 (3) ◽  
pp. 142-148
Author(s):  
Andrea Meckley Kutyana

According to the American Tinnitus Association, up to 30 million people suffer from tinnitus and, of those, 12.2 million experience tinnitus severe enough to warrant medical attention. Tinnitus is believed to result from an abnormal auditory perception reflecting dysregulation of the central (CNS) and autonomic nervous system (ANS). However, regulating the ANS has received very little research attention despite the fact that stress is correlated with exacerbation of symptoms and distress. It is believed that when the autonomic nervous system is calm, the presence of severe tinnitus will be less noticeable and individuals can shift their experience from one of severe debilitation to one of acceptance and peace. Three case studies are presented as an initial investigation into the impact heart rate variability biofeedback may have on the subjective perception of tinnitus and the accompanying distress. Further research is needed, but heart rate variability biofeedback may prove to be an effective adjunct intervention for tinnitus.


2015 ◽  
Vol 84 (1) ◽  
Author(s):  
Martin Rauber ◽  
Marjan Bilban ◽  
Radovan Starc

Brief description of the article: This article considers heart rate variability as a measurable parameter of stress reaction and present recent studies that examined the impact of occupational stress on heart rate variability and thus autonomic nervous system.ABSTRACT Stress is a complex psychoneuroendocrinological and immune response of an individual to stressogenic factor. The most important contemporary stressogenic factors are mental, psycho-social and socio-economic stressors. This especially holds true for occupational stress. Many symptoms and signs of disease are associated with chronic occupational stress. Among those are cardiovascular diseases, metabolic and psychiatric disorders.This article describes different stressogenic factors that lead to occupational stress and two conceptual models of occupational stress (Karasek’s Demand/Control Model and Siegrist’s Effort-Reward Imbalance Model). Reaction to stress can be measured in various ways. This article summarizes the physiology of heart beat regulation and presents heart rate variability as a measurable parameter of stress reaction. Heart rate variability gives us an insight into autonomic modulation of the heart and functioning of the entire autonomic nervous system. This article presents the latest results of larger studies that examined the impact of occupational stress on heart rate variability and various mechanisms that lead to end-organ damage due to changes in autonomic nervous system as a result of work stress. Subjects exposed to chronic stress have significantly lower heart rate variability compared with subjects unaffected by stress. Researches have shown that reduced heart rate variability reliably predicts mortality among health adults, as well as morbidity and mortality in patients after acute myocardial infarction, in patients with chronic heart failure and mortality in patients with chronic kidney disease. 


2016 ◽  
Vol 17 (5) ◽  
pp. 498
Author(s):  
Alyssa Conte Da Silva ◽  
Juliana Falcão Padilha ◽  
Jefferson Luiz Brum Marques ◽  
Cláudia Mirian De Godoy Marques

Introdução: Existem poucos estudos que evidenciam a manipulação vertebral relacionada à modulação autonômica cardíaca. Objetivo: Revisar a literatura sobre os efeitos da manipulação vertebral sobre a modulação autonômica cardíaca. Métodos: Foi realizada uma busca bibliográfica nas bases de dados da saúde Medline, Pubmed e Cinahl, no período correspondido entre setembro e novembro de 2014. Foram utilizados os descritores em inglês Spinal Manipulation, Cardiac Autonomic Modulation, Autonomic Nervous System, Heart Rate Variability, além de associações entre eles. Resultados: Foram encontrados 190 artigos, sendo excluídos 39 por serem repetidos, restando 151. Destes, 124 não se encaixaram nos critérios de inclusão e após leitura crítica e análise dos materiais foram selecionados 7 artigos. Grande parte dos estudos revelou que a manipulação da coluna, independente do segmento, demonstra alterações autonômicas, tanto em nível simpático quanto parassimpático. Conclusão: Existem diferentes metodologias para avaliação da modulação autonômica cardíaca, sendo a Variabilidade da Frequência cardíaca através do eletrocardiograma a mais utilizada. A manipulação vertebral exerceu influência, na maioria dos artigos, sobre a modulação autonômica cardíaca.Palavras-chave: manipulação da coluna, sistema nervoso autônomo, variabilidade da frequência cardíaca. 


2021 ◽  
Author(s):  
Garry Elvin ◽  
Paras Patel ◽  
Petia Sice ◽  
Chirine Riachy ◽  
Nigel Osborne ◽  
...  

BACKGROUND Heart rate variability (HRV), or the variation in the time interval between consecutive heartbeats, is a proven measure for assessing changes in autonomic activity. An increase in variability suggests an upregulation of the parasympathetic nervous system (PNS). Music was shown to have an effect on the limbic system, respiratory rate, and blood pressure. However, there have been relatively few empirical investigations on the effect of music on HRV compared to mean heart rate (HR). Also, the majority of studies have been experimental rather than interventional, reporting significant changes in HRV as a function of musical characteristics, such as tempo, genre, and valence. OBJECTIVE The aim of this pilot study is to evaluate the impact of short duration music listening on the autonomic nervous system response of healthy adults. METHODS Six participants (three males and three females) were tested to investigate the effect of listening to music on HR and HRV. Electrocardiographic (ECG) data was recorded at a sampling rate of 1000 Hz using an eMotion Faros 360 device produced by Bittium Biosignals. The data was collected while the participants listened to four pre-selected songs in a random order separated by a relaxation period of 5 minutes. Data was then cleaned and processed through Kubious HRV 2.0 software. Statistical analysis using Wilcoxon signed rank test was carried out for the time and frequency domains. RESULTS For all but one song that is shorter than 3 minutes (song 1), we observed a statistically significant increase in Standard Deviation of the RR intervals (SDRR) (song 1: P=.125, r=.333; song 2: P=.023, r=.575; song 3: P=.014, r=.635; song 4: P=.014, r=.635) and in the Low Frequency (LF) component of the cardiac spectrogram (song 1: P=.300, r=.151; song 2: P=.038, r=.514; song 3: P=.014, r=.635; song 4: P=.014, r=.635) with a large effect size r, indicating increased HRV. No significant change in mean HR was observed (song 1: P=.173 r=-.272; song 2: P=.058, r=-.454; song 3: P=.125, r=-.333; song 4: P=.232. r=-.212). CONCLUSIONS Listening to pre-selected songs of longer duration than 3 minutes 30 seconds is associated with significant increases in HRV measures, especially SDRR and LF. Music thus has the potential to overcome autonomic nervous system (ANS) dysregulation and thereby benefit health and wellbeing.


2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


1999 ◽  
Vol 29 (6) ◽  
pp. 590 ◽  
Author(s):  
Hae Ok Jung ◽  
Ki Bae Seung ◽  
Hyo Young Lim ◽  
Dong Heon Kang ◽  
Ki Yuk Chang ◽  
...  

2021 ◽  
Vol 10 (11) ◽  
pp. e294101119781
Author(s):  
Antonio Gomes da Silva Neto ◽  
Daniel Souza Ferreira Magalhães ◽  
Raduan Hage ◽  
Laurita dos Santos ◽  
José Carlos Cogo

The assessment of heart rate variability (HRV) by linear methods in conjunction with Poincaré plots can be useful for evaluating cardiac regulation by the autonomic nervous system and for the diagnosis and prognosis of heart disease in snakes. In this report, we describe an analysis of HRV in conscious adult corn snakes Pantherophis guttatus (P. guttatus).  The electrocardiogram (ECG) parameters were determined in adult corn snakes (8 females, 13 males) and used for HRV analysis, and the RR interval was analyzed by linear methods in the time and frequency domains. There was no sex-related difference in heart rate. However, significant differences were seen in the duration of the P, PR, and T waves and QRS complex; there was no difference in the QT interval. The values for the RR interval varied by 15.3% and 18.8% in male and female snakes, respectively, and there was considerable variation in the values for the high and low frequency domains. The changes in the time domain were attributed to regulation by the parasympathetic branch of the autonomic nervous system, in agreement with variations in the high and low frequency domains. The values for standard deviations 1 and 2 in Poincaré plots, as well as the values of the frequency domain, provide useful parameters for future studies of cardiac function in P. guttatus.


Sign in / Sign up

Export Citation Format

Share Document