Simultaneous information and energy transfer in large-scale cellular networks with sleep mode

Author(s):  
Kun Chen ◽  
Xiangming Wen ◽  
Wenpeng Jing ◽  
Zhaoming Lu ◽  
Hua Shao ◽  
...  
2005 ◽  
Vol 23 (10) ◽  
pp. 3365-3373 ◽  
Author(s):  
J. Birn ◽  
M. Hesse

Abstract. Magnetic reconnection is the crucial process in the release of magnetic energy previously stored in the magnetotail in association with substorms. However, energy transfer and dissipation in the vicinity of the reconnection site is only a minor part of the energy conversion. We discuss the energy release, transport, and conversion based on large-scale resistive MHD simulations of magnetotail dynamics and more localized full particle simulations of reconnection. We address in particular, where the energy is released, how it propagates and where and how it is converted from one form into another. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer. Bulk kinetic energy, although locally significant in the outflow from the reconnection site, plays a more important role as mediator or catalyst in the transfer between magnetic and thermal energy. Generator regions with potential auroral consequences are located primarily off the equatorial plane in the boundary regions of the plasma sheet.


2017 ◽  
Vol 16 (8) ◽  
pp. 2228-2245 ◽  
Author(s):  
Yuedong Xu ◽  
Zhujun Xiao ◽  
Hui Feng ◽  
Tao Yang ◽  
Bo Hu ◽  
...  

1976 ◽  
Vol 73 ◽  
pp. 333-333
Author(s):  
A. P. Moses ◽  
R. C. Smith

The anomalous mass-luminosity relation for the components of a contact binary system is usually explained by postulating strong energy transfer from the primary to the secondary. It has been assumed that the transfer occurs in the common convective envelope surrounding the two stars, but so far the only attempt at a model for the energy transfer has been the sideways convection model of Hazlehurst and Meyer-Hofmeister (1973), which assumes a large-scale circulation of material between the two components.Any detailed discussion of the dynamics in the common envelope must take account of the predominantly vertical motions associated with normal thermal convection, of Coriolis forces and of viscosity. We have constructed an approximate model for the horizontal transfer of energy between the two components, using a mixing-length approach and taking all three factors into account. The major factors are the vertical convection and the Coriolis forces, which together prevent a large-scale circulation of the type proposed by Hazlehurst and Meyer-Hofmeister. Instead, the flow breaks up into smallscale eddies whose horizontal scale is determined by the interaction of convection, Coriolis forces and viscosity. This has the important qualitative consequence that horizontal energy transfer will occur only if the mean horizontal pressure gradient between the two stars exceeds a certain minimum value. This condition can easily be satisfied in the adiabatic zone of the envelope, but may be an important restriction in the super-adiabatic zone.Using our model, we were able to estimate the entropy difference between components which is required to transfer enough energy to explain the observed mass-luminosity relation. We found that equal entropy models are possible only if the contact is deep. Unequal entropy models are possible for any degree of contact, so long as the contact extends down as far as the adiabatic zone. If, as has been suggested, the depth of contact increases during evolution then zero-age models must have shallow contact and hence unequal entropies. Deep contact equal entropy models would then form as a result of evolution.A difficulty is that in our model insufficient energy transfer can occur in the super-adiabatic zone to produce WUMa light curves for the unequal entropy models. This may mean that further work is needed on the exact surface conditions in these stars.


1978 ◽  
Vol 87 (2) ◽  
pp. 305-319 ◽  
Author(s):  
Cha-Mei Tang ◽  
Steven A. Orszag

Large-scale atmospheric flow shares certain attributes with two-dimensional turbulence. In this paper, we study the effect of spherical geometry on two-dimensional turbulence.Energy transfer is multi-component in spherical geometry in contrast to energy transfer among triads of wave vectors in Cartesian geometry. It follows that energy transfer is more local in spherical than in Cartesian geometry. Enstrophy transfer to higher wavenumbers in spherical geometry is less than enstrophy transfer to higher wavenumbers in Cartesian geometry. Since both energy and enstrophy are inviscid constants of motion, the back transfer of energy is also less in spherical than in Cartesian geometry. Therefore, with a finite viscosity, enstrophy decays more slowly in spherical geometry than in Cartesian geometry. Here these conjectures are tested numerically by spectral methods. The numerical results agree well with the conjectures.


IEEE Access ◽  
2015 ◽  
Vol 3 ◽  
pp. 2987-2999 ◽  
Author(s):  
Yifan Zhou ◽  
Zhifeng Zhao ◽  
Yves Louet ◽  
Qianlan Ying ◽  
Rongpeng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document