Rapeseed Nitrogen Status Estimation of Vis-NIR Spectra Based on Partial Least Square and BP Neural Network

Author(s):  
Min Huang ◽  
Yong He ◽  
Haiyan Cen ◽  
Dengsheng Zhu
2014 ◽  
Vol 651-653 ◽  
pp. 301-304
Author(s):  
Li Liu ◽  
Li Yan ◽  
Yao Cheng Xie

Textiles are necessaries of human life. The fiber content is index of textile quality and how to measure it has important meaning. A method for testing fiber contents in mixture textiles by near infrared spectroscopy (NIR) was researched. The near infrared Spectra of samples in the range of 4000 cm-1 - 10000 cm-1 were obtained. Noise reduction and compression of spectra data was done by wavelet transform (WT). The reconstructed spectral signals were established based on WT and the correction models based on back propagation (BP) neural network were built. Comparisons between the BP neural network models at different analysis scale and the model of partial least square method (PLS) were given. When the structure of neural network is 11-9-2 for cotton/ terylene mixture samples and 21-13-2 for cotton/wool mixture samples, the best accuracy and fastest convergence speed is achieved. Experimental results have shown that this approach by Fourier transform NIR based on the BP neural network to predict the fiber content of textile mixture can satisfy the requirement of quantitative analysis and is also suitable for other fiber contents measurement of mixture textiles.


2021 ◽  
Vol 36 (06) ◽  
Author(s):  
NGUYEN MINH QUANG ◽  
TRAN NGUYEN MINH AN ◽  
NGUYEN HOANG MINH ◽  
TRAN XUAN MAU ◽  
PHAM VAN TAT

In this study, the stability constants of metal-thiosemicarbazone complexes, logb11 were determined by using the quantitative structure property relationship (QSPR) models. The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The QSPR models were built by using the ordinary least square regression (QSPROLS), partial least square regression (QSPRPLS), primary component regression (QSPRPCR) and artificial neural network (QSPRANN). The best linear model QSPROLS (with k of 9) involves descriptors C5, xp9, electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 and core-core repulsion. The QSPRPLS, QSPR PCR and QSPRANN models were developed basing on 9 varibles of the QSPROLS model. The quality of the QSPR models were validated by the statistical values; The QSPROLS: R2train = 0.944, Q2LOO = 0.903 and MSE = 1.035; The QSPRPLS: R2train = 0.929, R2CV = 0.938 and MSE = 1.115; The QSPRPCR: R2train = 0.934, R2CV = 0.9485 and MSE = 1.147. The neural network model QSPRANN with architecture I(9)-HL(12)-O(1) was presented also with the statistical values: R2train = 0.9723, and R2CV = 0.9731. The QSPR models also were evaluated externally and got good performance results with those from the experimental literature.


2020 ◽  
Vol 33 (10) ◽  
pp. 1633-1641
Author(s):  
Dae-Hyun Lee ◽  
Seung-Hyun Lee ◽  
Byoung-Kwan Cho ◽  
Collins Wakholi ◽  
Young-Wook Seo ◽  
...  

Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network.Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation.Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy.Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.


2011 ◽  
Vol 26 (2) ◽  
pp. 105-114 ◽  
Author(s):  
M. Khanmohammadi ◽  
N. Dallali ◽  
A. Bagheri Garmarudi ◽  
M. Zarnegar ◽  
K. Ghasemi

Partial Least Square (PLS) and Artificial Neural Network (ANN) techniques were compared during development of an analytical method for quantitative determination of sulfamethoxazole (SMX) and trimethoprim (TMP) in Co-Trimoxazole®suspension. The procedure was based on Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR) spectrometry. The 800–2500 cm−1spectral region was selected for quantitative analysis.R2and relative error of prediction (REP) in PLS technique were (0.989, 2.128) and (0.986, 1.381) for SMX and TMP, respectively. These statistical parameters were improved using the ANN models considering the complexity of the sample and the speediness and simplicity of the method.R2and RMSEC in modified method were (0.997, 1.064) and (0.997, 0.634) for SMX and TMP, respectively.


2012 ◽  
Vol 198-199 ◽  
pp. 1712-1715
Author(s):  
Hua Zhong Wang ◽  
Wen Juan Shan

The most important quality indexes to evaluate pulp washing performance are residual soda and the Baume degree. But it is difficult to measure the two indexes directly. To solve the problem of optimization control of the washing process, the model of the residual soda and the Baume degree are studied in this paper. Simulating residual soda and the Baume degree via a two-step neural network and modeling them based on least square method and steady-state data obtained by neural network model. Simulation results show that this method can effectively locate the pulp washing process.


Sign in / Sign up

Export Citation Format

Share Document