An enhanced wave-variable based four-channel bilateral teleoperation control design

Author(s):  
Fanghao Huang ◽  
Zheng Chen ◽  
Jason Gu
2005 ◽  
Vol 128 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Ho Ching ◽  
Wayne J. Book

In a conventional bilateral teleoperation, transmission delay over the Internet can potentially cause instability. A wave variable algorithm guarantees teleoperation stability under varying transmission delay at the cost of poor transient performance. Adding a predictor on the master side can reduce this undesirable side effect, but that would require a slave model. An inaccurate slave model used in the predictor as well as variations in transmission delay, both of which are likely under realistic situations, can result in steady-state errors. A direct drift control algorithm is used to drive this error to zero, regardless of the source of the error. A semi-adaptive predictor that can distinguish between free space and a rigid contact environment is used to provide a more accurate force feedback on the master side. A full adaptive predictor is also used that estimates the environmental force using recursive least squares with a forgetting factor. This research presents the experimental results and evaluations of the previously mentioned wave-variable-based methods under a realistic operation environment using a real master and slave. The algorithm proposed is innovative in that it takes advantage of the strengths of several control methods to build a promising bilateral teleoperation setup that can function under varying transmission delay, modeling error, and changing environment. Success could lead to practical applications in various fields, such as space-based remote control, and telesurgery.


Robotica ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 859-875 ◽  
Author(s):  
Da Sun ◽  
Fazel Naghdy ◽  
Haiping Du

SUMMARYStability and transparency are two critical indices of bilateral teleoperation systems. The wave variable method is a conservative approach to robustly guarantee system passivity under arbitrary constant time delays. However, the wave-variable-based reflection is an intrinsic problem in this method because it can significantly degrade system transparency and disorient the operator's perception of the remote environment. In order to enhance both the transparency and the stability of bilateral teleoperation systems in the presence of large time delays, a new four-channel (4-CH) architecture is proposed which applies two modified wave-transformation controllers to reduce wave-based reflections. Transparency and stability of the proposed system are analyzed and the improvement in these when using this method is measured experimentally. Results clearly demonstrate that the proposed method can produce high transparency and stability even in the presence of large time delays.


Author(s):  
J. Scot Hart ◽  
Pete Shull ◽  
Diana Gentry ◽  
Gu¨nter Niemeyer ◽  
Stephen Roderick ◽  
...  

Bilateral teleoperation across significant time delays has been extensively studied and is posed to provide remote control of orbiting robots. Unfortunately, most standard approaches assume an impedance controlled, backdrivable robot. In this work, we apply wave variable control to Ranger, a large, space-qualified, geared robot. We incorporate local feedback of contact forces into the control framework to achieve backdrivable operation. In particular, this control framework imitates an idealized point mass to respect Ranger’s dynamic capabilities. Beyond perceiving steady state contact forces, the user’s perception can be enhanced with high-frequency acceleration feedback of contact transients. Experimental results from controlling Ranger using network communications show stable operation in free space and contact.


Sign in / Sign up

Export Citation Format

Share Document