scholarly journals STEAM: A fast compact thermal model for two-phase cooling of integrated circuits

Author(s):  
Arvind Sridhar ◽  
Yassir Madhour ◽  
David Atienza ◽  
Thomas Brunschwiler ◽  
John Thome
2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Pritish R. Parida ◽  
Hsin-Hua Tsuei ◽  
Timothy J. Chainer

The 3D (three dimensional) integration of microelectronic chips into chip stacks is an enabling technology to provide a possible path for increasing computational performance. However, 3D chip stacks require a solution to significant new thermal challenges. As a feasible solution, two-phase cooling utilizing a chip-to-chip interconnect-compatible dielectric fluid can be used. This chip-integrated micrometer scale two-phase cooling technology can be essential to fully optimize the benefits of improved integration density and modularity of 3D stacking of high performance integrated circuits (ICs) for future computing systems; but is faced with significant developmental challenges including high fidelity modeling. In the present work, an Eulerian multiphase model has been developed for simulating two-phase evaporative cooling through chip embedded microscale cavities. First, the model was used to predict the flow and heat transfer characteristics for coolant R245fa flowing through a single straight micro channel with cross section 100 × 100 um and length 10 mm. The flow is sub-cooled in the initial section of the channel and saturated in the remaining. The results were compared to experimental data available from literature, focusing on the model capability to predict the correct flow pattern, temperature profile and pressure drop. Next, the validated model was extended to the simulation of complex flow geometries expected in microprocessor chip-stacks with chip-to-chip interconnects.


1983 ◽  
Author(s):  
S. Ollendorf ◽  
F. A. Costello

Author(s):  
Etienne Costa-Patry ◽  
Stefano Nebuloni ◽  
Jonathan Olivier ◽  
John Richard Thome
Keyword(s):  
Hot Spot ◽  
On Chip ◽  

Author(s):  
Cong Hiep Hoang ◽  
Srikanth Rangarajan ◽  
Yaman Manaserh ◽  
Mohammad Tradat ◽  
Ghazal Mohsenian ◽  
...  

Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


1983 ◽  
Author(s):  
Robert H. Hamasaki ◽  
Janet L. Abe ◽  
James L. Franklin

Sign in / Sign up

Export Citation Format

Share Document