Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.

2019 ◽  
pp. 31-38
Author(s):  
Артем Михайлович Годунов ◽  
Евгений Эдуардович Роговой ◽  
Роман Сергеевич Орлов ◽  
Рустем Юсуфович Турна

Technical progress entails the use of more powerful equipment on satellites. In connection with the growth of heat generation onboard the spacecraft, the task is to develop thermal control systems based on two-phase mechanically pumped fluid loop (2PMPFL). The advantage of such systems is the ability to transport a greater amount of heat, reduced to a unit of flow, than when using circuits with a single-phase coolant. The study of two-phase thermal control systems in terrestrial conditions is difficult because gravity affects the hydraulics and heat transfer of two-phase flows. Particularly difficult is the study of transients. This article presents the results of tests of a recuperative heat exchanger, which allows to study transient processes in 2PMPFL with high accuracy.It was designed and manufactured the heat exchanger of simple “tube in tube” type design. The thermal characteristics of the heat exchanger were determined on the experimental stand, which is a prototype of a closed-type 2PMPFL with ammonia coolant. Single-phase “liquid” modes, two-phase modes with low mass vapor content (up to 0.04), and single-phase transient modes were investigated. It has been experimentally determined that a heat exchanger under given conditions is capable of removing up to 1323 W of heat in a single-phase mode and up to 1641 W of heat - when operating in a two-phase mode. The data obtained in the course of the experiments allowed us to select the most appropriate known correlation for calculating the stationary characteristics of the heat exchanger with an error not exceeding 5%, which is a high indicator of accuracy for engineering calculations.The heat exchanger has low thermal inertia. The conclusion is relevant for the range of parameters: the ammonia temperature at the inlet is 24...60 ⁰C; antifreeze inlet temperature 5… 16 ⁰C; ammonia mass flow rate 8...17 g / s; mass flow rate of antifreeze 1...4 kg/min.Due to the low thermal inertia of the heat exchanger, it can be used to study transients with the rate of change of the coolant temperature at the inlet up to 1.85 K / min. You can use the stationary method of thermal calculation, i.e. calculate the transient process in the quasi-stationary approximation.


2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


Author(s):  
Jiarui Zhang ◽  
Zhixun Xia ◽  
Liya Huang ◽  
Likun Ma

To predict engine performance and further instruct the integral engine design, a more reasonable and accurate numerical model of the two-phase underwater ramjet was introduced in this article by considering the bubble formation process. Two-fluid model was used to examine the bubbly flow in the nozzle and its mathematical model was solved by a fourth-order Runge–Kutta method. Subsequently, the influences of vessel velocity, gas mass flow rate, navigational depth, and orifice diameter of the bubble injector on the performance of the engine were discussed. Results show that, compared with convergent nozzle, Laval nozzle is proved to improve the thrust of the engine, especially at relatively high velocity and gas mass flow rate. With the other conditions fixed, there is an optimum vessel velocity for the ramjet, in which maximum thrust is generated. And a smaller orifice diameter always promotes the engine performance, while this promotion is negligible when the orifice diameter is smaller than 1 mm. Besides, increasing backpressure will cause serious performance drop, which means that the the two-phase underwater ramjet is only efficient for shallow depths.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract In a Counter Rotating Turbine (CRT), the stationary nozzle is trailed by two rotors that rotate in the opposite direction to each other. Flow in a CRT stage is multifaceted and more three dimensional, especially, in the gap between nozzle and rotor 1 as well as rotor 1 and rotor 2. By varying this gap between the blade rows, the flow and wake pattern can be changed favorably and may lead to improved performance. Present work analyzes the aspect of change in flow field through the interface, especially the wake pattern and deviation in flow with change in spacing. The components of turbine stage are modeled for different gaps between the components using ANSYS® ICEM CFD 14.0. Normalized flow rates ranging from 0.091 to 0.137 are used. The 15, 30, 50 and 70% of the average axial chords are taken as axial gaps in the present analysis. CFX 14.0 is used for simulation. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Pressure distribution contours at the outlets of the blade rows describe the flow pattern clearly in the interface region. Wake strength at nozzle outlet is more for the lowest gap. At rotor 1 outlet, it is less for x/a = 0.3 and increases with gap. Incidence angles at the inlets of rotors are less for the smaller gaps. Deviation angle at the outlet of rotor 1 is also considered, as rotor 1-rotor 2 interaction is more significant in CRT. Deviation angle at rotor 1 outlet is minimum for this gap. Also, for the intermediate mass flow rate of 0.108, x/a = 0.3 is giving more stage performance. This suggests that at certain axial gap, there is better wake convection and flow outline, when compared to other gap cases. Further, it is identified that for the axial gap of x/a = 0.3 and the mean mass flow rate of 0.108, the performance of CRT is maximum. It is clear that the flow pattern at the interface is changing the incidence and deviation with change in axial gap and flow rate. This study is useful for the gas turbine community to identify the flow rates and gaps at which any CRT stage would perform better.


Sign in / Sign up

Export Citation Format

Share Document