A High-Speed Pipelined-SAR ADC with Resistor-based Self-biasing RAMP

Author(s):  
Yan Yan ◽  
Hongliang Xu ◽  
Jing Jin
Keyword(s):  
2019 ◽  
Vol 66 (2) ◽  
pp. 489-501
Author(s):  
Dezhi Xing ◽  
Yan Zhu ◽  
Chi-Hang Chan ◽  
Franco Maloberti ◽  
Seng-Pan U ◽  
...  

2019 ◽  
Vol 29 (06) ◽  
pp. 2050084
Author(s):  
Daiguo Xu ◽  
Hequan Jiang ◽  
Dongbin Fu ◽  
Xiaoquan Yu ◽  
Shiliu Xu ◽  
...  

This paper presents a linearity improved 10-bit 120-MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with high-speed and low-noise dynamic comparator. A gate cross-coupled technique is introduced in boost sampling switch, the clock feedthrough effect is compensated without extra auxiliary switch and the linearity of sampling switch is enhanced. Further, substrate voltage boost technique is proposed, the absolute values of threshold voltage and equivalent impedances of MOSFETs are both depressed. Consequently, the delay of comparator is also reduced. Moreover, the reduction of threshold voltages for input MOSFETs could bring higher transconductance and lower equivalent input noise. To demonstrate the proposed techniques, a design of SAR ADC is fabricated in 65-nm CMOS technology, consuming 1.5[Formula: see text]mW from 1[Formula: see text]V power supply with a SNDR [Formula: see text][Formula: see text]dB and SFDR [Formula: see text][Formula: see text]dB. The proposed ADC core occupies an active area of 0.021[Formula: see text]mm2, and the corresponding FoM is 24.4 fJ/conversion-step with Nyquist frequency.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 305 ◽  
Author(s):  
Dong Wang ◽  
Xiaoge Zhu ◽  
Xuan Guo ◽  
Jian Luan ◽  
Lei Zhou ◽  
...  

This paper presents an eight-channel time-interleaved (TI) 2.6 GS/s 8-bit successive approximation register (SAR) analog-to-digital converter (ADC) prototype in a 55-nm complementary metal-oxide-semiconductor (CMOS) process. The channel-selection-embedded bootstrap switch is adopted to perform sampling times synchronization using the full-speed master clock to suppress the time skew between channels. Based on the segmented pre-quantization and bypass switching scheme, double alternate comparators clocked asynchronously with background offset calibration are utilized in sub-channel SAR ADC to achieve high speed and low power. Measurement results show that the signal-to-noise-and-distortion ratio (SNDR) of the ADC is above 38.2 dB up to 500 MHz input frequency and above 31.8 dB across the entire first Nyquist zone. The differential non-linearity (DNL) and integral non-linearity (INL) are +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively. The ADC consumes 60 mW from a 1.2 V supply, occupies an area of 400 μm × 550 μm, and exhibits a figure-of-merit (FoM) of 348 fJ/conversion-step.


2016 ◽  
Vol 16 (3) ◽  
pp. 274-286
Author(s):  
Sunghun Cho ◽  
DongSoo Lee ◽  
Juri Lee ◽  
Hyung-Gu Park ◽  
YoungGun Pu ◽  
...  
Keyword(s):  
Sar Adc ◽  

Sign in / Sign up

Export Citation Format

Share Document