scholarly journals A 2.6 GS/s 8-Bit Time-Interleaved SAR ADC in 55 nm CMOS Technology

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 305 ◽  
Author(s):  
Dong Wang ◽  
Xiaoge Zhu ◽  
Xuan Guo ◽  
Jian Luan ◽  
Lei Zhou ◽  
...  

This paper presents an eight-channel time-interleaved (TI) 2.6 GS/s 8-bit successive approximation register (SAR) analog-to-digital converter (ADC) prototype in a 55-nm complementary metal-oxide-semiconductor (CMOS) process. The channel-selection-embedded bootstrap switch is adopted to perform sampling times synchronization using the full-speed master clock to suppress the time skew between channels. Based on the segmented pre-quantization and bypass switching scheme, double alternate comparators clocked asynchronously with background offset calibration are utilized in sub-channel SAR ADC to achieve high speed and low power. Measurement results show that the signal-to-noise-and-distortion ratio (SNDR) of the ADC is above 38.2 dB up to 500 MHz input frequency and above 31.8 dB across the entire first Nyquist zone. The differential non-linearity (DNL) and integral non-linearity (INL) are +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively. The ADC consumes 60 mW from a 1.2 V supply, occupies an area of 400 μm × 550 μm, and exhibits a figure-of-merit (FoM) of 348 fJ/conversion-step.

Author(s):  
Chaya Shetty ◽  
M. Nagabushanam ◽  
Venkatesh Nuthan Prasad

The proposed work presents a High speed 14-bit 125MS/s successive-approximation-register asynchronous analog-to-digital-converter (SAR-ADC). A novel-based Dual-Split-Array-Three-Section (DSATS) capacitor DAC (DSATS-CDAC) is employed to increase the linearity and energy efficiency of the digital-to-analog converter (DAC), additional advantage of this work is that, the area is reduced by 59.76% of conventional design. The proposed switching technique of the (DSATS-CDAC) consumes less switching energy. Additionally, bootstrap switching is employed to ensure improved linearity and reduced power consumption.in order to enhance the speed of operation and increase the precision a preamplifier latch based comparator is implemented with the delay of 250ps. The proposed SAR-ADC prototype is implemented in a 90nm CMOS process and consumes a power of 42.8mW at 1V operating supply. The proposed design achieves a figure of merit (FOM) of 37.43 fJ/conversion-step, signal-to-noise-ratio (SNR) of 81 dB, and an effective-number-of-bits (ENOB) of 13.16 bits with a sampling rate of 125MS/s.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1733
Author(s):  
Hanbo Jia ◽  
Xuan Guo ◽  
Xuqiang Zheng ◽  
Xiaodi Xu ◽  
Danyu Wu ◽  
...  

This paper presents a 4-bit 36 GS/s analog-to-digital converter (ADC) employing eight time-interleaved (TI) flash sub-ADCs in 40 nm complementary metal-oxide-semiconductor (CMOS) process. A wideband front-end matching circuit based on a peaking inductor is designed to increase the analog input bandwidth to 18 GHz. A novel offset calibration that can achieve quick detection and accurate correction without affecting the speed of the comparator is proposed, guaranteeing the high-speed operation of the ADC. A clock distribution circuit based on CMOS and current mode logic (CML) is implemented in the proposed ADC, which not only maintains the speed and quality of the high-speed clock, but also reduces the overall power consumption. A timing mismatch calibration is integrated into the chip to achieve fast timing mismatch detection of the input signal which is bandlimited to the Nyquist frequency for the complete ADC system. The experimental results show that the differential nonlinearity (DNL) and integral nonlinearity (INL) are −0.28/+0.22 least significant bit (LSB) and −0.19/+0.16 LSB, respectively. The signal-to-noise-and-distortion ratio (SNDR) is above 22.5 dB and the spurious free dynamic range (SFDR) is better than 35 dB at 1.2 GHz. An SFDR above 24.5 dB and an SNDR above 18.6 dB across the entire Nyquist frequency can be achieved. With a die size of 2.96 mm * 1.8 mm, the ADC consumes 780 mW from the 0.9/1.2/1.8 V power supply.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 369 ◽  
Author(s):  
Padmanabhan Balasubramanian ◽  
Nikos Mastorakis

Addition is a fundamental operation in microprocessing and digital signal processing hardware, which is physically realized using an adder. The carry-lookahead adder (CLA) and the carry-select adder (CSLA) are two popular high-speed, low-power adder architectures. The speed performance of a CLA architecture can be improved by adopting a hybrid CLA architecture which employs a small-size ripple-carry adder (RCA) to replace a sub-CLA in the least significant bit positions. On the other hand, the power dissipation of a CSLA employing full adders and 2:1 multiplexers can be reduced by utilizing binary-to-excess-1 code (BEC) converters. In the literature, the designs of many CLAs and CSLAs were described separately. It would be useful to have a direct comparison of their performances based on the design metrics. Hence, we implemented homogeneous and hybrid CLAs, and CSLAs with and without the BEC converters by considering 32-bit accurate and approximate additions to facilitate a comparison. For the gate-level implementations, we considered a 32/28 nm complementary metal-oxide-semiconductor (CMOS) process targeting a typical-case process–voltage–temperature (PVT) specification. The results show that the hybrid CLA/RCA architecture is preferable among the CLA and CSLA architectures from the speed and power perspectives to perform accurate and approximate additions.


2019 ◽  
Vol 29 (06) ◽  
pp. 2050084
Author(s):  
Daiguo Xu ◽  
Hequan Jiang ◽  
Dongbin Fu ◽  
Xiaoquan Yu ◽  
Shiliu Xu ◽  
...  

This paper presents a linearity improved 10-bit 120-MS/s successive approximation register (SAR) analog-to-digital converter (ADC) with high-speed and low-noise dynamic comparator. A gate cross-coupled technique is introduced in boost sampling switch, the clock feedthrough effect is compensated without extra auxiliary switch and the linearity of sampling switch is enhanced. Further, substrate voltage boost technique is proposed, the absolute values of threshold voltage and equivalent impedances of MOSFETs are both depressed. Consequently, the delay of comparator is also reduced. Moreover, the reduction of threshold voltages for input MOSFETs could bring higher transconductance and lower equivalent input noise. To demonstrate the proposed techniques, a design of SAR ADC is fabricated in 65-nm CMOS technology, consuming 1.5[Formula: see text]mW from 1[Formula: see text]V power supply with a SNDR [Formula: see text][Formula: see text]dB and SFDR [Formula: see text][Formula: see text]dB. The proposed ADC core occupies an active area of 0.021[Formula: see text]mm2, and the corresponding FoM is 24.4 fJ/conversion-step with Nyquist frequency.


2014 ◽  
Vol 1049-1050 ◽  
pp. 687-690
Author(s):  
Yu Han Gao ◽  
Ru Zhang Li ◽  
Dong Bing Fu ◽  
Yong Lu Wang ◽  
Zheng Ping Zhang

High speed encoder is the key element of high speed analog-to-digital converter (ADC). Therefor the type of encoder, the type of code, bubble error suppression and bit synchronization must be taken into careful consideration especially for folding and interpolating ADC. To reduce the bubble error which may resulted from the circuit niose, comparator metastability and other interference, the output of quantizer is first encoded with gray code and then converted to binary code. This high speed encoder is verified in the whole time-interleaved ADC with 0.18 Bi-CMOS technology, the whole ADC can achieve a SNR of 45 dB at the sampling rate of 5GHz and input frequency of 495MHz, meanwhile a bit error rate (BER) of less than 10-16 is ensured by this design.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Florence Choong ◽  
Mamun Ibne Reaz ◽  
Mohamad Ibrahim Kamaruzzaman ◽  
Md. Torikul Islam Badal ◽  
Araf Farayez ◽  
...  

Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1100
Author(s):  
Deeksha Verma ◽  
Khuram Shehzad ◽  
Danial Khan ◽  
Sung Jin Kim ◽  
Young Gun Pu ◽  
...  

A design of low-power 10-bit 1 MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) is presented in this paper. To improve the linearity of the digital-to-analog converter (DAC) and energy efficiency, a common mode-based monotonic charge recovery (CMMC) switching technique is proposed. The proposed switching technique consumes only 63.75 CVREF2 switching energy, which is far less as compared to the conventional switching technique without dividing or adding additional switches. In addition, bootstrap switching is implemented to ensure enhanced linearity. To reduce the power consumption from the comparator, a dynamic latch comparator with a self-comparator clock generation circuit is implemented. The proposed prototype of the SAR ADC is implemented in a 55 nm CMOS (complementary metal-oxide-semiconductor) process. The proposed architecture achieves a figure of merit (FOM) of 17.4 fJ/conversion, signal-to-noise distortion ratio (SNDR) of 60.39 dB, and an effective number of bits (ENOB) of 9.74 bits with a sampling rate of 1 MS/s at measurement levels. The implemented SAR ADC consumes 14.8 µW power at 1 V power supply.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 375
Author(s):  
Jianwen Li ◽  
Xuan Guo ◽  
Jian Luan ◽  
Danyu Wu ◽  
Lei Zhou ◽  
...  

A 1 GS/s 12-bit pipelined/successive-approximation-register (pipelined/SAR) hybrid analog-to-digital converter (ADC) is presented in this paper, where the five most significant bits are resolved by two cascading 2.5-bit multiplying digital-to-analog converters, and the eight least significant bits are determined by a two-channel time-interleaved successive-approximation-register (TI-SAR) quantizer. An integrated input buffer and an operational amplifier with improved voltage efficiency at 1.8 V are adopted to achieve high-linearity stably in wide band for 1 GS/s. By designing a 500 MS/s 8-bit SAR quantizer at 1 V, the number of required interleaved channels is minimized to simplify the complexity and an adaptive power/ground is used to compensate the common-mode mismatch between the blocks in different power supply voltages. The offset and gain mismatches due to the TI-SAR quantizer are compensated by a calibration scheme based on virtually-interleaved channels. This ADC is fabricated in a 40 nm complementary metal-oxide-semiconductor (CMOS) technology, and it achieves a signal-to-noise-and-distortion ratio (SNDR) of 58.2 dB and a spurious free dynamic range (SFDR) of 72 dB with a 69 MHz input tone. When the input frequency increases to 1814 MHz in the fourth Nyquist zone, it can maintain an SNDR of 55.3 dB and an SFDR of 64 dB. The differential and integral nonlinearities are −0.94/+0.85 least significant bit (LSB) and −3.4/+3.9 LSB, respectively. The core ADC consumes 94 mW, occupies an active area of 0.47 mm × 0.25 mm. The Walden figure of merit reaches 0.14 pJ/step with a Nyquist input.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5860
Author(s):  
Aymeric Panglosse ◽  
Philippe Martin-Gonthier ◽  
Olivier Marcelot ◽  
Cédric Virmontois ◽  
Olivier Saint-Pé ◽  
...  

Single-Photon Avalanche Diodes (SPAD) in Complementary Metal-Oxide Semiconductor (CMOS) technology are potential candidates for future “Light Detection and Ranging” (Lidar) space systems. Among the SPAD performance parameters, the Photon Detection Probability (PDP) is one of the principal parameters. Indeed, this parameter is used to evaluate the SPAD sensitivity, which directly affects the laser power or the telescope diameter of space-borne Lidars. In this work, we developed a model and a simulation method to predict accurately the PDP of CMOS SPAD, based on a combination of measurements to acquire the CMOS process doping profile, Technology Computer-Aided Design (TCAD) simulations, and a Matlab routine. We compare our simulation results with a SPAD designed and processed in CMOS 180 nm technology. Our results show good agreement between PDP predictions and measurements, with a mean error around 18.5%, for wavelength between 450 and 950 nm and for a typical range of excess voltages between 15 and 30% of the breakdown voltage. Due to our SPAD architecture, the high field region is not entirely insulated from the substrate, a comparison between simulations performed with and without the substrate contribution indicates that PDP can be simulated without this latter with a moderate loss of precision, around 4.5 percentage points.


Sign in / Sign up

Export Citation Format

Share Document