Histopathological Image and Lymphoma Image Classification using customized Deep Learning models and different optimization algorithms

Author(s):  
Ambarish Ganguly ◽  
Rik Das ◽  
S. K. Setua
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kinshuk Sengupta ◽  
Praveen Ranjan Srivastava

Abstract Background In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classification and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, introducing the use of Quantum Machine Learning (QML) in medical practice. Methods This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneumonia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and thereby establishes performance quality that is required for improved prediction rate when dealing with complex clinical image data exhibiting high biases. Results The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The proposed model outperformed the conventional deep learning models for specific classification task. The performance was evident because of the efficiency of quantum simulation and faster convergence property solving for an optimization problem for network training particularly for large-scale biased image classification task. The model run-time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy measure with an average recall of around 97.7%. Conclusion The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted to evaluate implementation scenarios by integrating the model within medical devices.


Author(s):  
Koyel Datta Gupta ◽  
Deepak Kumar Sharma ◽  
Shakib Ahmed ◽  
Harsh Gupta ◽  
Deepak Gupta ◽  
...  

2019 ◽  
Vol 16 (5) ◽  
pp. 776-780 ◽  
Author(s):  
Juan M. Haut ◽  
Sergio Bernabe ◽  
Mercedes E. Paoletti ◽  
Ruben Fernandez-Beltran ◽  
Antonio Plaza ◽  
...  

Author(s):  
Nassima Dif ◽  
Zakaria Elberrichi

Deep learning methods are characterized by their capacity to learn data representation compared to the traditional machine learning algorithms. However, these methods are prone to overfitting on small volumes of data. The objective of this research is to overcome this limitation by improving the generalization in the proposed deep learning framework based on various techniques: data augmentation, small models, optimizer selection, and ensemble learning. For ensembling, the authors used selected models from different checkpoints and both voting and unweighted average methods for combination. The experimental study on the lymphomas histopathological dataset highlights the efficiency of the MobileNet2 network combined with the stochastic gradient descent (SGD) optimizer in terms of generalization. The best results have been achieved by the combination of the best three checkpoint models (98.67% of accuracy). These findings provide important insights into the efficiency of the checkpoint ensemble learning method for histopathological image classification.


2021 ◽  
Author(s):  
Hamid Hassanpour

In this article, State-of-the-art deep learning models are evaluated and their performances in X-ray image classification is reported.


2021 ◽  
Author(s):  
Hamid Hassanpour

In this article, State-of-the-art deep learning models are evaluated and their performances in X-ray image classification is reported.


Sign in / Sign up

Export Citation Format

Share Document