Digital Twin-Based Operation Simulation System and Application Framework for Electromechanical Products

Author(s):  
Yang Lu ◽  
Xiaoli Qiu ◽  
Yan Xing
2021 ◽  
Vol 11 (15) ◽  
pp. 6810
Author(s):  
Corentin Coupry ◽  
Sylvain Noblecourt ◽  
Paul Richard ◽  
David Baudry ◽  
David Bigaud

In recent years, the use of digital twins (DT) to improve maintenance procedures has increased in various industrial sectors (e.g., manufacturing, energy industry, aerospace) but is more limited in the construction industry. However, the operation and maintenance (O&M) phase of a building’s life cycle is the most expensive. Smart buildings already use BIM (Building Information Modeling) for facility management, but they lack the predictive capabilities of DT. On the other hand, the use of extended reality (XR) technologies to improve maintenance operations has been a major topic of academic research in recent years, both through data display and remote collaboration. In this context, this paper focuses on reviewing projects using a combination of these technologies to improve maintenance operations in smart buildings. This review uses a combination of at least three of the terms “Digital Twin”, “Maintenance”, “BIM” and “Extended Reality”. Results show how a BIM can be used to create a DT and how this DT use combined with XR technologies can improve maintenance operations in a smart building. This paper also highlights the challenges for the correct implementation of a BIM-based DT combined with XR devices. An example of use is also proposed using a diagram of the possible interactions between the user, the DT and the application framework during maintenance operations.


2013 ◽  
pp. 1216-1230 ◽  
Author(s):  
Zhen-Sheng Guo ◽  
Yuzuru Tanaka

There is an increasing demand for 3D geographic simulation systems. Most systems currently available are closed and based on fixed architectures. Some systems allow us to develop and customize a 3D geographic simulation system, but this usually requires the writing of extensive program code. Especially in 3D geo-disaster simulations, for example, we need to dynamically integrate 2D legacy GIS with 3D geographic simulation systems in order to investigate the details about the damaged areas and the consequences of the disasters. The authors propose a component-based application framework for 3D geographic simulation that can integrate a legacy 2D GIS with geographic simulation systems in a 3D visual environment. Their framework provides a set of 3D visual components required for the development of a new interactive 3D visual geographic simulation. In their framework, component integrators can construct 3D geographic simulation systems by composing the 3D visual components. Moreover, the authors’ integration framework provides two fundamental integration mechanisms, view integration and query integration mechanisms, to integrate it with legacy 2D systems. The view integration function maps the 2D rendering of a legacy 2D GIS onto the surface of the 3D geography used in a 3D visual geographical simulator, and then dispatches every event on the geographic surface to the original 2D GIS. The query integration automatically converts each 3D simulation result that is shown as a set of highlighted regions on the surface of the geography to the corresponding regional query to the 2D GIS. The proposed framework is based on their 3D meme media architecture in which components are represented as meme media objects, and their interoperation is defined by slot connections between them. As a result, their framework enables users to compose 3D geographic simulation systems and to integrate a legacy 2D GIS with a 3D geographic simulation system simply by composing display objects in a 3D visual environment.


Author(s):  
Yi-Wei Chen ◽  
Rex Jomy Joseph ◽  
Alec Kanyuck ◽  
Shahwaz Khan ◽  
Rishi K. Malhan ◽  
...  

Abstract The composite sheet layup process involves stacking several layers of a viscoelastic prepreg sheet and curing the laminate to manufacture the component. Demands for automating functional tasks in the composite manufacturing processes have dramatically increased in the past decade. A simulation system representing a digital twin of the composite sheet can aid in the development of such an autonomous system for prepreg sheet layup. While Finite Element Analysis (FEA) is a popular approach for simulating flexible materials, material properties need to be encoded to produce high-fidelity mechanical simulations. We present a methodology to predict material parameters of a thin-shell FEA model based on real-world observations of the deformations of the object. We utilize the model to develop a digital twin of a composite sheet. The method is tested on viscoelastic composite prepreg sheets and fabric materials such as cotton cloth, felt and canvas. We discuss the implementation and development of a high-speed FEA simulator based on the VegaFEM library [29]. By using our method to identify sheet material parameters, the sheet simulation system is able to predict sheet behavior within 5 cm of average error and have proven its capability for 10 fps real-time sheet simulation.


2021 ◽  
Vol 9 (3) ◽  
pp. 338
Author(s):  
Qingcai Wu ◽  
Yunsheng Mao ◽  
Jianxun Chen ◽  
Chong Wang

Digital twin has aroused extensive attention of international academia and industry to support future interaction with the physical and virtual world. Although the research and application of digital twin spring up continuously, the concept in the manufacturing domain remains in its infancy. In this context, this paper first reviews the applications of digital twins for intelligent manufacturing. Then it presents an innovative application framework of a digital twin-driven ship intelligent manufacturing system and analyzes its operation mechanism. The application framework of a digital twin-driven ship intelligent manufacturing system mainly includes five parts: the physical layer, model layer, data layer, system layer, and application layer. Finally, key enabling techniques, as well as a case study in a pipe machining production line, are constructed and studied to validate the proposed approach. Meanwhile, system design and implementation, the twin modeling construction, application process, and implementation effect of the pipe machining production line are described in detail to provide a reference for enterprises.


Author(s):  
Zhen-Sheng Guo ◽  
Yuzuru Tanaka

There is an increasing demand for 3D geographic simulation systems. Most systems currently available are closed and based on fixed architectures. Some systems allow us to develop and customize a 3D geographic simulation system, but this usually requires the writing of extensive program code. Especially in 3D geo-disaster simulations, for example, we need to dynamically integrate 2D legacy GIS with 3D geographic simulation systems in order to investigate the details about the damaged areas and the consequences of the disasters. The authors propose a component-based application framework for 3D geographic simulation that can integrate a legacy 2D GIS with geographic simulation systems in a 3D visual environment. Their framework provides a set of 3D visual components required for the development of a new interactive 3D visual geographic simulation. In their framework, component integrators can construct 3D geographic simulation systems by composing the 3D visual components. Moreover, the authors’ integration framework provides two fundamental integration mechanisms, view integration and query integration mechanisms, to integrate it with legacy 2D systems. The view integration function maps the 2D rendering of a legacy 2D GIS onto the surface of the 3D geography used in a 3D visual geographical simulator, and then dispatches every event on the geographic surface to the original 2D GIS. The query integration automatically converts each 3D simulation result that is shown as a set of highlighted regions on the surface of the geography to the corresponding regional query to the 2D GIS. The proposed framework is based on their 3D meme media architecture in which components are represented as meme media objects, and their interoperation is defined by slot connections between them. As a result, their framework enables users to compose 3D geographic simulation systems and to integrate a legacy 2D GIS with a 3D geographic simulation system simply by composing display objects in a 3D visual environment.


2018 ◽  
Vol 10 (3) ◽  
pp. 1141-1153 ◽  
Author(s):  
Yu Zheng ◽  
Sen Yang ◽  
Huanchong Cheng

2019 ◽  
Vol 16 (5) ◽  
pp. 172988141988066
Author(s):  
Xuqian Zhang ◽  
Wenhua Zhu

In the wake of the continuous deepening of the application of new generation information technology in the manufacturing field, digital twin, as a most new active factors for smart manufacturing, has become a new research hot spot. Based on such a background, the article proposes a novel application framework of digital twin-driven product smart manufacturing system and analyzes its operation mechanism. Key enabling technologies such as digital twin mapping technology with manufacturing entity, twinning of cyber and physical manufacturing system, as well as twining data-driven machining parameter optimization are also illustrated in detail. Finally, a case of the aeroengine fan blade manufacturing is given to demonstrate the feasibility and effectiveness of the implementation method mentioned above. Meanwhile, potential industrial applications and limitations are discussed as well to provide valuable insights to aeroengine blade manufacturers.


Author(s):  
Yi-Wei Chen ◽  
Rex Jomy Joseph ◽  
Alec Kanyuck ◽  
Shahwaz Khan ◽  
Rishi K. Malhan ◽  
...  

Abstract The composite sheet layup process involves stacking several layers of a viscoelastic prepreg sheet and curing the laminate to manufacture the component. Demands for automating functional tasks in the composite manufacturing processes have dramatically increased in the past decade. A simulation system representing a digital twin of the composite sheet can aid in the development of such an autonomous system for prepreg sheet layup. While Finite Element Analysis (FEA) is a popular approach for simulating flexible materials, material properties need to be encoded to produce high-fidelity mechanical simulations. We present a methodology to predict material parameters of a thin-shell FEA model based on real-world observations of the deformations of the object. We utilize the model to develop a digital twin of a composite sheet. The method is tested on viscoelastic composite prepreg sheets and fabric materials such as cotton cloth, felt and canvas. We discuss the implementation and development of a high-speed FEA simulator based on the VegaFEM library. By using our method to identify sheet material parameters, the sheet simulation system is able to predict sheet behavior within 5 cm of average error and have proven its capability for 10 fps real-time sheet simulation.


Sign in / Sign up

Export Citation Format

Share Document