Energy consumption of IEEE 802.11 connected consumer electronic devices

Author(s):  
Florian Pregizer ◽  
Daniel Fehrenbacher
2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

The increasing needs and demands of diverse services by the users to be able to exchange and obtain information in real time, reliable, and flexible to be one of the problems faced by existing communication technology. WLAN on the IEEE 802.11 standard is one of the wireless technologies that can be the solution of the problem. It has a relatively small area of ??communication that is between 20-70 meters only, only able to serve up to 2007 stations, and has considerable energy consumption, causing some systems contained in the WLAN in IEEE 802.11 standard less work maximally. With these shortcomings, the WLAN on the IEEE 802.11 standard introduces a new task group called IEEE 802.11ah. IEEE 802.11ah is a new WLAN standard working on the 900 MHz frequency spectrum, a 1 kilometer communications coverage area, capable of serving 8192 stations with new AID hierarchies, has lower energy consumption and can increase throughput value by RAW mechanism. This study will make changes to the number of RAW slots in the IEEE 802.11ah to see how they affect the network performance. In this research it is found that the change of RAW slot number influence to network performance, in this case is throughput, average delay, packet delivery ratio and energy consumption.


2016 ◽  
Vol 5 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Pablo R. Velasco González

Tiziana Terranova draws attention to the necessity of questioning how algorithmically enabled automation works “in terms of control and monetization” and “what kind of time and energy” is being subsumed by it (Terranova 387). Cryptocurrencies are payment technologies that automate the production of money-like tokens (Bergstra and Weijland) following algorithmic rules to maintain a fixed production rate. Different kinds of energy and residues, which are not always acknowledged, are involved in this process. Here I distinguish between two closely linked layers in the Bitcoin token production: first, an algorithmic layer, which contains the instructions and rules for the creation of bitcoins; second, a hardware layer, which performs and embodies the former. While these layers work together, I will argue that they enact their own kind of logics of energy and waste. I will begin at the more visible end of the production cycle, the hardware layer, where the definition of waste and energy consumption is shared with many electronic devices; then I will trace back its algorithmic layer, which as I argue, follows a different logic.


Author(s):  
Chrisa Tsinaraki

Several consumer electronic devices that allow capturing digital multimedia content (like mp3 recorders, digital cameras, DVD camcorders, smart phones etc.) are available today. These devices have allowed both the amateur and the professional users to produce large volumes of digital multimedia material, which, together with the traditional media objects digitized recently (using scanners, audio and video digitization devices) form a huge distributed multimedia information source. The multimedia material that is available today is usually organized in independent multimedia information sources, developed on top of different software platforms. The Internet, the emergence of advanced network infrastructures that allow for the fast, efficient and reliable transmission of multimedia content and the development of digital multimedia content services on top of them form an open multimedia consumption environment. In this environment, the users access the multimedia material either through computers or through cheap consumer electronic devices that allow the consumption and management of multimedia content. The users of such an open environment need to be able to access the services offered by the different vendors in a transparent way and to be able to compose the different atomic services (like, for example, multimedia content filtering) into new, composite ones. In order to fulfill this requirement, interoperability between the multimedia content services offered is necessary. Interoperability is achieved, at the syntactic level, through the adoption of standards. At the semantic level, interoperability is achieved through the integration of domain knowledge expressed in the form of domain ontologies. An ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its ontological commitment to a particular conceptualization of the world (Guarino, 1998). The standard that dominates in multimedia content description is the MPEG-7 (Salembier, 2001), formally known as Multimedia Content Description Interface. It supports multimedia content description from several points of view, including media information, creation information, structure, usage information, textual annotations, media semantics, and low-level visual and audio features. Since the MPEG-7 allows the structured description of the multimedia content semantics, rich and accurate semantic descriptions can be created and powerful semantic retrieval and filtering services can be built on top of them. It has been shown, in our previous research (Tsinaraki, Fatourou and Christodoulakis, 2003), that domain ontologies capturing domain knowledge can be expressed using pure MPEG-7 constructs. This way, domain knowledge can be integrated in the MPEG-7 semantic descriptions. The domain knowledge is subsequently utilized for supporting semantic personalization, retrieval and filtering and has been shown to enhance the retrieval precision (Tsinaraki, Polydoros and Christodoulakis, 2007). Although multimedia content description is now standardized through the adoption of the MPEG-7 and semantic multimedia content annotation is possible, multimedia content retrieval and filtering (especially semantic multimedia content retrieval and filtering), which form the basis of the multimedia content services, are far from being successfully standardized.


2020 ◽  
Vol 127 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Shaan Khurshid ◽  
Jeffrey S. Healey ◽  
William F. McIntyre ◽  
Steven A. Lubitz

Atrial fibrillation (AF) is a common and morbid arrhythmia. Stroke is a major hazard of AF and may be preventable with oral anticoagulation. Yet since AF is often asymptomatic, many individuals with AF may be unaware and do not receive treatment that could prevent a stroke. Screening for AF has gained substantial attention in recent years as several studies have demonstrated that screening is feasible. Advances in technology have enabled a variety of approaches to facilitate screening for AF using both medical-prescribed devices as well as consumer electronic devices capable of detecting AF. Yet controversy about the utility of AF screening remains owing to concerns about potential harms resulting from screening in the absence of randomized data demonstrating effectiveness of screening on outcomes such as stroke and bleeding. In this review, we summarize current literature, present technology, population-based screening considerations, and consensus guidelines addressing the role of AF screening in practice.


Sign in / Sign up

Export Citation Format

Share Document