User-Specific Visual Attention Estimation Based on Visual Similarity and Spatial Information in Images

Author(s):  
Yuya Moroto ◽  
Keisuke Maeda ◽  
Takahiro Ogawa ◽  
Miki Haseyama
2020 ◽  
Author(s):  
Shaodan Li ◽  
Hong Tang

<p>In all kinds of natural disasters, earthquake is regarded as one of the greatest natural disaster in the world, and it seriously threats human's lives and properties. In the actual scene of earthquake disasters, the types of pre-earthquake satellite images available in the affected area are various, and they are from different sensors. However, the current researches on multi-source satellite image building recognition are not sufficient. In addition, when extracting building damage information, we can only determine whether the building is collapsed using the post-earthquake satellite images. Even the images have the sub-meter resolution, the identification of lightly damaged buildings is still a challenge. In order to solve the above problems, in this paper, we will use the post-earthquake UAV images and the pre-earthquake satellite images to extract the building damage information in rural areas of Sichuan, China. In particular, the main research contents of this paper are as follows:</p><ul><li>(1) According to the color feature of UAV images and the shape feature from point cloud data, we divide the building damage into four types: intact buildings, slightly damaged buildings, partially collapsed buildings and completely collapsed buildings, and give the rules of damage grades. In particular, the Chinese restaurant franchise model, which simultaneously fuses the color and shape features, is proposed to detect the earthquake-triggered roof-holes. Based on the roof-holes, the type of slightly damaged buildings is identificated.</li> <li>(2) At present, the model of building extraction from remote sensing images is suitable for an image, that is, for different images, the model needs to learn its model parameters again. In this paper, based on the generalized Chinese restaurant franchise (gCRF) model, we introduce the morphological profiles to propose the gCRF_MBI model. In the residential regions, the buildings are extracted by fusing the spatial information and the morphological profiles in the gCRF_MBI model.</li> <li>(3) The visual attention model selects the regions of interest from the complex scenes by simulating the visual attention mechanism of biological objects, which is similar to the extraction of residential regions from remote sensing images. In this paper, based on the basic principle of the spectral residual approach, we utilize the approach to extract the latent residential regions from remote sensing images, and we analyze the effects of different band combinations and different threshold methods on the extraction of residential regions.</li> </ul>


Author(s):  
Thomas Z. Strybel

Techniques for the production of externalized, “3-dimensional” sound images for acoustic signals presented via headphone were developed in the past decade. These 3-D sound systems simulate both interaural time and intensity cues, and cues based on the action of the pinnae on incoming sound sources (e.g. Wenzel, Wightman and Foster, 1988). It has been anticipated that these 3-D sound systems would be useful in the cockpit and other work settings because they provide a natural method directing an operator to some event in the environment. This symposium is a progress report on research which has either examined potential applications of 3-D sound systems in the workplace, or attempted to understand how auditory spatial cues direct visual attention. Researchers at NASA Ames Research Center and Wright Patterson Air Force Base have identified cockpit tasks that can benefit from auditory spatial cueing. Some of these tasks include gate identification, blunder avoidance, and traffic identification of approaching and receding targets. The benefits of audio spatial cueing are usually measured by determining the reduction in search latency that is realized when searching for targets with and without auditory spatial cues. These benefits can be explained by the findings that both simple detection and identification times are faster and more constant across the frontal hemifield when auditory spatial cues are presented with the target. Furthermore, for sounds presented in the central visual field, auditory spatial cues can either supplement or substitute for abrupt visual onsets in directing visual attention.


2021 ◽  
Author(s):  
Hauke S. Meyerhoff ◽  
Nina Gehrer ◽  
Simon Merz ◽  
Christian Frings

We introduce a new audio-visual illusion revealing the interplay between audio-visual integration and selective visual attention. This illusion involves two simultaneously moving objects that change their motion trajectory occasionally, but only the direction changes of one object are accompanied by spatially uninformative tones. We observed a selective increase in perceived object speed of the audio-visually synchronized object by measuring the point of subjective equality in a forced-choice paradigm. The illusory increase in perceived speed of the audio-visually synchronized object persisted when preventing eye movements. Using temporally matched color changes of the synchronized object also increased the perceived speed. Yet, using color changes of a surrounding frame instead of tones had no effect on perceived speed ruling out simple alertness explanations. Thus, in contrast to coinciding tones, visual coincidences only elicit illusory increases in perceived speed when the coincidence provided spatial information. Taken together, our pattern of results suggests that audio-visual synchrony attracts visual attention towards the coinciding visual object, leading to an increase in speed-perception and thus shedding new light on the interplay between attention and multisensory feature integration. We discuss potential limitations such as the choice of paradigm and outline prospective research question to further investigate the effect of audio-visual integration on perceived object speed.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Vijay Krishnamurthi ◽  
Brent Bailey ◽  
Frederick Lanni

Excitation field synthesis (EFS) refers to the use of an interference optical system in a direct-imaging microscope to improve 3D resolution by axially-selective excitation of fluorescence within a specimen. The excitation field can be thought of as a weighting factor for the point-spread function (PSF) of the microscope, so that the optical transfer function (OTF) gets expanded by convolution with the Fourier transform of the field intensity. The simplest EFS system is the standing-wave fluorescence microscope, in which an axially-periodic excitation field is set up through the specimen by interference of a pair of collimated, coherent, s-polarized beams that enter the specimen from opposite sides at matching angles. In this case, spatial information about the object is recovered in the central OTF passband, plus two symmetric, axially-shifted sidebands. Gaps between these bands represent "lost" information about the 3D structure of the object. Because the sideband shift is equal to the spatial frequency of the standing-wave (SW) field, more complete recovery of information is possible by superposition of fields having different periods. When all of the fields have an antinode at a common plane (set to be coincident with the in-focus plane), the "synthesized" field is peaked in a narrow infocus zone.


Author(s):  
John R. Porter

New ceramic fibers, currently in various stages of commercial development, have been consolidated in intermetallic matrices such as γ-TiAl and FeAl. Fiber types include SiC, TiB2 and polycrystalline and single crystal Al2O3. This work required the development of techniques to characterize the thermochemical stability of these fibers in different matrices.SEM/EDS elemental mapping was used for this work. To obtain qualitative compositional/spatial information, the best realistically achievable counting statistics were required. We established that 128 × 128 maps, acquired with a 20 KeV accelerating voltage, 3 sec. live time per pixel (total mapping time, 18 h) and with beam current adjusted to give 30% dead time, provided adequate image quality at a magnification of 800X. The maps were acquired, with backgrounds subtracted, using a Noran TN 5500 EDS system. The images and maps were transferred to a Macintosh and converted into TIFF files using either TIFF Maker, or TNtolMAGE, a Microsoft QuickBASIC program developed at the Science Center. From TIFF files, images and maps were opened in either NIH Image or Adobe Photoshop for processing and analysis and printed from Microsoft Powerpoint on a Kodak XL7700 dye transfer image printer.


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


1988 ◽  
Vol 53 (3) ◽  
pp. 316-327 ◽  
Author(s):  
Alan G. Kamhi ◽  
Hugh W. Catts ◽  
Daria Mauer ◽  
Kenn Apel ◽  
Betholyn F. Gentry

In the present study, we further examined (see Kamhi & Catts, 1986) the phonological processing abilities of language-impaired (LI) and reading-impaired (RI) children. We also evaluated these children's ability to process spatial information. Subjects were 10 LI, 10 RI, and 10 normal children between the ages of 6:8 and 8:10 years. Each subject was administered eight tasks: four word repetition tasks (monosyllabic, monosyllabic presented in noise, three-item, and multisyllabic), rapid naming, syllable segmentation, paper folding, and form completion. The normal children performed significantly better than both the LI and RI children on all but two tasks: syllable segmentation and repeating words presented in noise. The LI and RI children performed comparably on every task with the exception of the multisyllabic word repetition task. These findings were consistent with those from our previous study (Kamhi & Catts, 1986). The similarities and differences between LI and RI children are discussed.


Sign in / Sign up

Export Citation Format

Share Document