Level-shifter-less High-side Power Driver

Author(s):  
Li-Jie Huang ◽  
Deng-Fong Lu ◽  
Wen-Hao Fan ◽  
Chin Hsia
Keyword(s):  
2020 ◽  
Vol 35 (7) ◽  
pp. 7295-7304
Author(s):  
Bing Yuan ◽  
Jing Ying ◽  
Wai Tung Ng ◽  
Xin-Quan Lai ◽  
Ling-Fei Zhang

2020 ◽  
Vol 1528 ◽  
pp. 012040 ◽  
Author(s):  
Eri Wiyadi ◽  
Agustina Wati ◽  
Yanuar Hamzah ◽  
Lazuardi Umar
Keyword(s):  

2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2021 ◽  
Vol 73 (07) ◽  
pp. 18-21
Author(s):  
Stephen Rassenfoss

Want more production from a shale well? Consider lining up the perforations. A handful of speakers at the recent SPE Hydraulic Fracturing Technology Conference talked about improved fracturing results with oriented perforating—shooting the holes at the same place in the casing, often the top. This breaks from designs that arranged the holes in a helical pattern with each charge angled 60° from the previous one. “We did see indications we are getting better production from oriented perforating,” said Blake Horton, senior completions engineer for Ovintiv (SPE 204177). Production gains were also reported by ConocoPhillips which compared production from similar wells with and without oriented perforating. The analysis was designed to filter out differences in the geology, drilling, and completions. It concluded the value of the added production far exceeded the $20,000-per-well cost of installing the assembly, including a weight bar to tilt the perforating guns into position. “That’s less than the undiscounted value of 400 barrels of oil. An internal study indicated that ConocoPhillips improved estimated ultimate recovery (EUR) by a minimum of 5% when using high-side-oriented perforating,” said Dave Cramer, senior engineering fellow at ConocoPhillips and an early advocate for the method. “For an initial choked flow rate of 1,000 B/D, the payout on investment is 10 days or less,” he said. Ovintiv declined to provide a number, but Horton said ConocoPhillips’ estimate is within Ovintiv’s range based on similar comparisons of wells with and without oriented perforating. That number is at the low end of the estimates offered in discussions about oriented perforating performance at the conference. Higher estimates are questioned by those who doubt the test results can be sustained when the method is scaled up. What was certain is the number of users is rising and includes names such as Shell and Chevron. “We found that oriented perforating definitely helps to treat all the clusters,” said Jon Snyder, a staff completion engineer for ConocoPhillips who presented the paper, adding, “by oriented perforating we mean that when we are perforating, we aim for the high side of the wellbore” (SPE 204203). When Horton polled the audience at a recent talk, more than half of the respondents said they were using gun systems designed to orient the perforating charges at a target angle. “A year from now, few people will not be doing oriented perforating; the advantages of it are clear,” Cramer said. He has been promoting the idea within the company for years with mixed acceptance.


Sign in / Sign up

Export Citation Format

Share Document