Studying the Effect of Using a Low Power PV and DC-DC Boost Converter on the Performance of the Solar Energy PV System

Author(s):  
Eman Hegazy ◽  
Waleed Saad ◽  
Mona Shokair
Author(s):  
Mohammad Hadin A. Malek ◽  
Farahiyah Mustafa ◽  
Anis Maisarah Mohd Asry

<span lang="EN-US">This paper presents a battery-less power supply using supercapacitor as energy storage powered by solar. In this study the supercapacitor as energy storage, as opposed to batteries, has widely researched in recent years. Supercapacitors act like other capacitors, but their advantage is having enormous power storage capabilities. Maximum charging voltage and capacitance are two variables of storage in the supercapacitor. The supercapacitor is used as energy storage to charge a low power device wirelessly and act as a power supply. The solar energy is used as a backup power supply if there is no electricity in the remote or isolated area to charge the supercapacitor. The time taken to charge the supercapacitor depend on the amount of current rating of the solar panel. The higher the current, the shorter the time taken to charges the supercapacitor. Power supply using supercapacitor can store up to 30 Vdc using a DC-DC boost converter.</span>


Author(s):  
S. Kamalakkannan ◽  
D. Kirubakaran

<span lang="EN-US">In this work, the fickleness of solar energy can be overcome by using Maximum Power Point Tracking algorithm (MPPT). Perturb and Observation (P&amp;O) MPPT algorithm accomplish fast the maximum power point for rapid change of environmental conditions such as irradiance intensity and temperature. The MPPT algorithm applied to solar PV system keep the boost converter output constant. Output from boost converter is taken to three phase impedance-source inverter with RL load and grid system. Impedance-source inverter performs the transformation of variable DC output of the solar PV system in to near sinusoidal AC output. This near sinusoidal AC output consecutively is served to the RL load first and then to grid system. The simulation is carried out in matlab/simulink platform both for RL load and grid system and the simulation results are experimentally validated for RL load arrangement only.</span>


2020 ◽  
Vol 6 (12) ◽  
pp. 13-20
Author(s):  
Sarika Goutami ◽  
Mr. Malaya S Dash

The use of renewable energy sources such as solar and wind energy can be extended to include residential and transportation applications due to environmental benefits. The main objective of this paper the solar energy system will be equipped with two type of converters DC/DC and DC/AC. The DC/DC boost converter is generally driven by the MPPT technique. We need to design a single controller for both the converters that would meet the power requirements and enhance its efficiency. To enhance the active power output by utilizing the designed controller for both the converters. The power enhancement would be done by utilizing a hybrid integrated constrained particle swarm optimization technique that is also modified to meet the MPPT requirements of the solar energy system. the result of The single controller has resulted in the following key improvements. The algorithm was first incorporated with the MPPT algorithm for the boost converter which has improved the DC voltage profile from 500 V to 595 V. The active power output from the system has enhanced to 113KW from 100Kw which is also stable as compared to the system having dual controllers for the converters. The PSO algorithm is so constrained in a manner such that the output voltage and current distortion has also reduced. The voltage output distortion level from the hybrid constrained PSO controllers was found to be 0.20% which is less than 0.26% of the system having dual controllers Also the THD level in the current output from the hybrid PSO integrated algorithm was reduced to 0.16% from 3.36% in the solar PV system modeled with dual controllers.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 751
Author(s):  
Mariam A. Sameh ◽  
Mostafa I. Marei ◽  
M. A. Badr ◽  
Mahmoud A. Attia

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV systems to secure harvesting the maximum possible power from the PV modules. In this paper, optimized control is performed through the application of relatively newly developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial value of the duty cycle of the boost converter is optimized for maximizing the amount of power extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the grid-connected inverter of the PV system. In addition, the performance of the proposed system based on the EPO algorithm is compared with another newly developed optimization technique based on the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old, well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system using the proposed algorithms under different PS conditions, results are recorded and introduced.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Sign in / Sign up

Export Citation Format

Share Document