Novel low cost higher order derivitive Gaussian pulse generator circuit

Author(s):  
Z.N. Low ◽  
J.H. Cheong ◽  
C.I. Law
2021 ◽  
Vol 2145 (1) ◽  
pp. 012058
Author(s):  
S Buathong ◽  
J Janpoon ◽  
N Suksawat ◽  
S Deachapunya

Abstract A simple short-pulse generator circuit based on electronic gates is designed for short electric pulse of about 12 ns at Full Width at Half Maximum (FWHM) and 3.6 Volt amplitude for driving a laser diode. Using our circuit with a 780 nm laser diode designed and fabricated for producing short light pulses. The circuit utilizes an AND gate, a XOR gate, and a common function generator, provides a repetition rate from DC up to 1 MHz. The laser pulses were generated and then detected via an avalanche photodiodes (APD). This finding can benefit the field of light-based quantum information including single photon experiments.


Integration ◽  
2019 ◽  
Vol 69 ◽  
pp. 301-308 ◽  
Author(s):  
Baolin Wei ◽  
Tian Chen ◽  
Chao Lu ◽  
Weilin Xu ◽  
Yuanzhi Zhang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2867
Author(s):  
Marko Malajner ◽  
Danijel Šipoš ◽  
Dušan Gleich

This paper proposes an improved design of a pulse-based radar. An improved design of a pulse generator is presented using step recovery diodes and a signal mixer for the received signal. Two-step recovery diodes produce pulses of 120 ps in duration. A pulse generator is improved by removing the negative power supply, resulting in a reduced number of electronic pulses. A sampling mixer at the receiver’s site receives the generated signal and stretches it from picoseconds into microseconds. The improved pulse generator is also used in the sampling mixer as a strobe pulse generator, which makes the sampling mixer much simpler. The stretched signal is then sampled by a low sample rate using an analog to digital converter. The proposed radar design achieves up to 8 GHz bandwidth and an equivalent receiving sample rate of about 100 GSa/s. The radar is controlled using a software-defined radio called Red Pitaya, which is also used for data acquisition. The proposed radar design uses widely available commercial components, which makes radar design widely available with low cost implementation.


2010 ◽  
Vol 8 ◽  
pp. 243-250 ◽  
Author(s):  
M. D. Blech ◽  
M. M. Leibfritz ◽  
R. Hellinger ◽  
D. Geier ◽  
F. A. Maier ◽  
...  

Abstract. A spherical near-field antenna measurement facility employing a time domain hardware gating technique is presented. On-off keyed sinusoidal impulses are used as stimuli requiring wideband antennas with a bandwidth in excess of 400 MHz. The received signal is evaluated in the time interval after reaching the steady state and before multipath components arising in the non-ideal anechoic chamber distort the signal. An application specific pulse generator synthesizing sinusoidal impulses with a sub-nanosecond settling time and a low-cost equivalent time (ET) sampling receiver developed and optimized for this particular purpose are described. Measurement results of typical ultra-wideband (UWB) antennas show a significant improvement of the measured antenna pattern compared to conventional techniques.


2014 ◽  
Vol 61 (6) ◽  
pp. 3050-3054 ◽  
Author(s):  
Farzad Inanlou ◽  
Nelson E. Lourenco ◽  
Zachary E. Fleetwood ◽  
Ickhyun Song ◽  
Duane C. Howard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document