Design of Neuro PID Controller and State Feedback Controller for Magnetic Levitation System

Author(s):  
M. Santhiya ◽  
S. Kishore
2021 ◽  
Vol 2111 (1) ◽  
pp. 012004
Author(s):  
A Winursito ◽  
G N P Pratama

Abstract Magnetic levitation system (MLS) is a nonlinear system that attracts the attention of many researchers, especially control engineers. It has wide range of application such as robotics, high-speed transportation, and many more. Unfortunately, it is not a simple task to control it. Here, we utilize state feedback controller with Linear-Quadratic Regulator (LQR) to regulate the position of a steel-ball in MLS. In addition, we also introduce the precompensator to nullify the steady-state errors. The linearized model, controller, and precompensator are simulated using Matlab. The results and simulation verify that the state feedback controller and precompensator succeed to stabilize the position of steel-ball at the equilibrium for 0.1766 seconds and no steady-state errors.


Author(s):  
Omar Waleed Abdulwahhab

This paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controller in terms of the operating point. The results of the simulation show that the operating point has significant effect on the performance of nonadaptive SFC, and this performance may degrade as the operating point deviates from the equilibrium point, while the ASFC achieves the required design specification for any operating point and outperforms the state feedback controller from this point of view.


Sign in / Sign up

Export Citation Format

Share Document