Betweeness-Centrality of Grid Networks

Author(s):  
Indra Rajasingh ◽  
Bharati Rajan ◽  
Florence Isido D.
2021 ◽  
Vol 13 (5) ◽  
pp. 2549
Author(s):  
Shahid Mahmood ◽  
Moneeb Gohar ◽  
Jin-Ghoo Choi ◽  
Seok-Joo Koh ◽  
Hani Alquhayz ◽  
...  

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii432-iii432
Author(s):  
Adeoye Oyefiade ◽  
Kiran Beera ◽  
Iska Moxon-Emre ◽  
Jovanka Skocic ◽  
Ute Bartels ◽  
...  

Abstract INTRODUCTION Treatments for pediatric brain tumors (PBT) are neurotoxic and lead to long-term deficits that are driven by the perturbation of underlying white matter (WM). It is unclear if and how treatment may impair WM connectivity across the entire brain. METHODS Magnetic resonance images from 41 PBT survivors (mean age: 13.19 years, 53% M) and 41 typically developing (TD) children (mean age: 13.32 years, 51% M) were analyzed. Image reconstruction, segmentation, and node parcellation were completed in FreeSurfer. DTI maps and probabilistic streamline generation were completed in MRtrix3. Connectivity matrices were based on the number of streamlines connecting two nodes and the mean DTI (FA) index across streamlines. We used graph theoretical analyses to define structural differences between groups, and random forest (RF) analyses to identify hubs that reliably classify PBT and TD children. RESULTS For survivors treated with radiation, betweeness centrality was greater in the left insular (p < 0.000) but smaller in the right pallidum (p < 0.05). For survivors treated without radiation (surgery-only), betweeness centrality was smaller in the right interparietal sulcus (p < 0.05). RF analyses showed that differences in WM connectivity from the right pallidum to other parts of the brain reliably classified PBT survivors from TD children (classification accuracy = 77%). CONCLUSIONS The left insular, right pallidum, and right inter-parietal sulcus are structurally perturbed hubs in PBT survivors. WM connectivity from the right pallidum is vulnerable to the long-term effects of treatment for PBT.


2019 ◽  
Vol 16 (6) ◽  
pp. 066001
Author(s):  
Si Li ◽  
M Cather Simpson ◽  
E Scott Graham ◽  
Charles P Unsworth
Keyword(s):  

Author(s):  
Marc De Leenheer ◽  
Chris Develder ◽  
Tim Stevens ◽  
Bart Dhoedt ◽  
Mario Pickavet ◽  
...  

2014 ◽  
Vol 21 (5) ◽  
pp. 1713-1732 ◽  
Author(s):  
Jun Xu ◽  
Jianfeng Yang ◽  
Chengcheng Guo ◽  
Yann-Hang Lee ◽  
Duo Lu

Sign in / Sign up

Export Citation Format

Share Document