Multi-Robot One-Target 3D Path Planning Based on Improved Bioinspired Neural Network

Author(s):  
Min Luo ◽  
Xiaorong Hou ◽  
Jing Yang
2021 ◽  
Author(s):  
Shahanaz Ayub ◽  
Navneet Singh ◽  
Md. Zair Hussain ◽  
Mohd Ashraf ◽  
Dinesh Kumar Singh ◽  
...  

Abstract Mobile robots have been increasingly popular in a variety of industries in recent years due to their ability to move in variable situations and perform routine jobs effectively. Path planning, without a dispute, performs a crucial part in multi-robot navigation, making it one of the very foremost investigated issues in robotics. In recent times, meta-heuristic strategies have been intensively investigated to tackle path planning issues in the similar way that optimizing issues were handled, or to design the optimal path for such multi-robotics to travel from the initial point to such goal. The fundamental purpose of portable multi-robot guidance is to navigate a mobile robot across a crowded area from initial point to target position while maintaining a safe route and creating optimum length for the path. Various strategies for robot navigational path planning were investigated by scientists in this field. This work seeks to discuss bio-inspired methods that are exploited to optimize hybrid neuro-fuzzy analysis which is the combination of neural network and fuzzy logic is optimized using the Particle Swarm optimization technique (PSO) in real-time scenarios. Several optimization approaches of bio-inspired techniques are explained briefly. Its simulation findings, which are displayed for two simulated scenarios reveal that hybridization increases multi-robot navigation accuracy in terms of navigation duration and length of the path.


2021 ◽  
Vol 6 (3) ◽  
pp. 4337-4344
Author(s):  
Yuxiao Chen ◽  
Ugo Rosolia ◽  
Aaron D. Ames

2021 ◽  
Vol 11 (4) ◽  
pp. 1448
Author(s):  
Wenju Mao ◽  
Zhijie Liu ◽  
Heng Liu ◽  
Fuzeng Yang ◽  
Meirong Wang

Multi-robots have shown good application prospects in agricultural production. Studying the synergistic technologies of agricultural multi-robots can not only improve the efficiency of the overall robot system and meet the needs of precision farming but also solve the problems of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting from the point of view of an agricultural multiple robot system architectures, this paper reviews the representative research results of five synergistic technologies of agricultural multi-robots in recent years, namely, environment perception, task allocation, path planning, formation control, and communication, and summarizes the technological progress and development characteristics of these five technologies. Finally, because of these development characteristics, it is shown that the trends and research focus for agricultural multi-robots are to optimize the existing technologies and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots, hybrid path planning and formation reconstruction. While synergistic technologies of agricultural multi-robots are extremely challenging in production, in combination with previous research results for real agricultural multi-robots and social development demand, we conclude that it is realistic to expect automated multi-robot systems in the future.


Sign in / Sign up

Export Citation Format

Share Document