scholarly journals IEEE ICDM 2010 Contest: TomTom Traffic Prediction for Intelligent GPS Navigation

Author(s):  
Marcin Wojnarski ◽  
Pawel Gora ◽  
Marcin Szczuka ◽  
Hung Son Nguyen ◽  
Joanna Swietlicka ◽  
...  
Author(s):  
Irina Strelkovskay ◽  
Irina Solovskaya ◽  
Anastasija Makoganjuk ◽  
Nikolaj Severin

The problem of forecasting self-similar traffic, which is characterized by a considerable number of ripples and the property of long-term dependence, is considered. It is proposed to use the method of spline extrapolation using linear and cubic splines. The results of self-similar traffic prediction were obtained, which will allow to predict the necessary size of the buffer devices of the network nodes in order to avoid congestion in the network and exceed the normative values ​​of QoS quality characteristics. The solution of the problem of self-similar traffic forecasting obtained with the Simulink software package in Matlab environment is considered. A method of extrapolation based on spline functions is developed. The proposed method has several advantages over the known methods, first of all, it is sufficient ease of implementation, low resource intensity and accuracy of prediction, which can be enhanced by the use of quadratic or cubic interpolation spline functions. Using the method of spline extrapolation, the results of self-similar traffic prediction were obtained, which will allow to predict the required volume of buffer devices, thereby avoiding network congestion and exceeding the normative values ​​of QoS quality characteristics. Given that self-similar traffic is characterized by the presence of "bursts" and a long-term dependence between the moments of receipt of applications in this study, given predetermined data to improve the prediction accuracy, it is possible to use extrapolation based on wavelet functions, the so-called wavelet-extrapolation method. Based on the results of traffic forecasting, taking into account the maximum values ​​of network node traffic, you can give practical guidance on how traffic is redistributed across the network. This will balance the load of network objects and increase the efficiency of network equipment.


2011 ◽  
Vol 31 (4) ◽  
pp. 901-903
Author(s):  
Yong SUN ◽  
Guang-wei BAI ◽  
Lu ZHAO

Author(s):  
Thulitha Senevirathna ◽  
Bathiya Thennakoon ◽  
Tharindu Sankalpa ◽  
Chatura Seneviratne ◽  
Samad Ali ◽  
...  

2021 ◽  
Vol 124 ◽  
pp. 102977
Author(s):  
Junyi Li ◽  
Fangce Guo ◽  
Aruna Sivakumar ◽  
Yanjie Dong ◽  
Rajesh Krishnan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory D. Clemenson ◽  
Antonella Maselli ◽  
Alexander J. Fiannaca ◽  
Amos Miller ◽  
Mar Gonzalez-Franco

AbstractGPS navigation is commonplace in everyday life. While it has the capacity to make our lives easier, it is often used to automate functions that were once exclusively performed by our brain. Staying mentally active is key to healthy brain aging. Therefore, is GPS navigation causing more harm than good? Here we demonstrate that traditional turn-by-turn navigation promotes passive spatial navigation and ultimately, poor spatial learning of the surrounding environment. We propose an alternative form of GPS navigation based on sensory augmentation, that has the potential to fundamentally alter the way we navigate with GPS. By implementing a 3D spatial audio system similar to an auditory compass, users are directed towards their destination without explicit directions. Rather than being led passively through verbal directions, users are encouraged to take an active role in their own spatial navigation, leading to more accurate cognitive maps of space. Technology will always play a significant role in everyday life; however, it is important that we actively engage with the world around us. By simply rethinking the way we interact with GPS navigation, we can engage users in their own spatial navigation, leading to a better spatial understanding of the explored environment.


Sign in / Sign up

Export Citation Format

Share Document